Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein

Dilshan S. Harischandra, Dharmin Rokad, Matthew L. Neal, Shivani Ghaisas, Sireesha Manne, Souvarish Sarkar, Nikhil Panicker, Gary Zenitsky, Huajun Jin, Mechelle Lewis, Xuemei Huang, Vellareddy Anantharam, Arthi Kanthasamy, Anumantha G. Kanthasamy

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

The aggregation of α-synuclein (αSyn) is considered a key pathophysiological feature of certain neurodegenerative disorders, collectively termed synucleinopathies. Given that a prion-like, cell-to-cell transfer of misfolded αSyn has been recognized in the spreading of αSyn pathology in synucleinopathies, we investigated the biological mechanisms underlying the propagation of the disease with respect to environmental neurotoxic stress. Considering the potential role of the divalent metal manganese (Mn 2+ ) in protein aggregation, we characterized its effect on αSyn misfolding and transmission in experimental models of Parkinson's disease. In cultured dopaminergic neuronal cells stably expressing wild-type human αSyn, misfolded αSyn was secreted through exosomes into the extracellular medium upon Mn 2+ exposure. These exosomes were endocytosed through caveolae into primary microglial cells, thereby mounting neuroinflammatory responses. Furthermore, Mn 2+ -elicited exosomes exerted a neurotoxic effect in a human dopaminergic neuronal model (LUHMES cells). Moreover, bimolecular fluorescence complementation (BiFC) analysis revealed that Mn 2+ accelerated the cell-to-cell transmission of αSyn, resulting in dopaminergic neurotoxicity in a mouse model of Mn 2+ exposure. Welders exposed to Mn 2+ had increased misfolded αSyn content in their serum exosomes. Stereotaxically delivering αSyn-containing exosomes, isolated from Mn 2+ -treated αSyn-expressing cells, into the striatum initiated Parkinsonian-like pathological features in mice. Together, these results indicate that Mn 2+ exposure promotes αSyn secretion in exosomal vesicles, which subsequently evokes proinflammatory and neurodegenerative responses in both cell culture and animal models.

Original languageEnglish (US)
Article numbereaau4543
JournalScience signaling
Volume12
Issue number572
DOIs
StatePublished - 2019
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein'. Together they form a unique fingerprint.

Cite this