Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes

Sungano Mharakurwa, Taida Kumwenda, Mtawa A.P. Mkulama, Mulenga Musapa, Sandra Chishimba, Clive J. Shiff, David J. Sullivan, Philip E. Thuma, Kun Liu, Peter Agre

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections - S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30-80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples - S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2-12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent - S108T (90%), with A16V and the 108T+16V double mutant (49-57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles.

Original languageEnglish (US)
Pages (from-to)18796-18801
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume108
Issue number46
DOIs
StatePublished - Nov 15 2011

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes'. Together they form a unique fingerprint.

Cite this