TY - JOUR
T1 - Loss of FHIT expression in cervical carcinoma cell lines and primary tumors
AU - Greenspan, David L.
AU - Connolly, Denise C.
AU - Wu, Rong
AU - Lei, Rachel Y.
AU - Vogelstein, Joshua T.C.
AU - Kim, Young Tak
AU - Mok, Jung Eun
AU - Muñoz, Nubia
AU - Bosch, F. Xavier
AU - Shah, Keerti
AU - Cho, Kathleen R.
PY - 1997/11/1
Y1 - 1997/11/1
N2 - Allelic deletions involving the short arm of chromosome 3 (3p13-21.1) have been observed frequently in cervical carcinomas. Recently, a candidate tumor suppressor gene, FHIT (Fragile Histidine Triad), was cloned and mapped to this chromosomal region (3p14.2). Abnormal FHIT transcripts have been identified previously in a variety of tumor cell lines and primary carcinomas, although their significance and the molecular mechanisms underlying their origin remain incompletely defined. In addition, integration of human papillomavirus DNA has been identified at a fragile site (FRA3B) within the FHIT locus in cervical cancer. These observations motivated us to evaluate FHIT mRNA and protein expression in cervical cancer cell lines, primary cervical carcinomas, and normal tissues. Transcripts of the expected size and sequence were the predominant species identified by reverse transcription (RT)-PCR in cultured keratinocytes and all normal tissues evaluated. In contrast, aberrant FHIT transcripts were readily demonstrated in 6 of 7 cervical carcinoma cell lines and 17 of 25 (68%) primary cervical carcinomas. Northern blot analyses demonstrated reduced or absent FHIT expression in the cervical carcinoma cell lines, particularly those with aberrant RT-PCR products. Immunohistochemical analysis of Fhit expression in cervical tissues revealed strong immunoreactivity in nonneoplastic squamous and glandular cervical epithelium and marked reduction or loss of Fhit protein in 28 of 33 (76%) primary cervical carcinomas. In those cervical cancer cell lines and primary tumors with exclusively aberrant or absent FHIT transcripts by RT-PCR, Fhit protein expression was always markedly reduced or absent. The frequent alterations in FHIT expression in many cervical carcinomas, but not in normal tissues, suggest that FHIT gene alterations may play an important role in cervical tumorigenesis.
AB - Allelic deletions involving the short arm of chromosome 3 (3p13-21.1) have been observed frequently in cervical carcinomas. Recently, a candidate tumor suppressor gene, FHIT (Fragile Histidine Triad), was cloned and mapped to this chromosomal region (3p14.2). Abnormal FHIT transcripts have been identified previously in a variety of tumor cell lines and primary carcinomas, although their significance and the molecular mechanisms underlying their origin remain incompletely defined. In addition, integration of human papillomavirus DNA has been identified at a fragile site (FRA3B) within the FHIT locus in cervical cancer. These observations motivated us to evaluate FHIT mRNA and protein expression in cervical cancer cell lines, primary cervical carcinomas, and normal tissues. Transcripts of the expected size and sequence were the predominant species identified by reverse transcription (RT)-PCR in cultured keratinocytes and all normal tissues evaluated. In contrast, aberrant FHIT transcripts were readily demonstrated in 6 of 7 cervical carcinoma cell lines and 17 of 25 (68%) primary cervical carcinomas. Northern blot analyses demonstrated reduced or absent FHIT expression in the cervical carcinoma cell lines, particularly those with aberrant RT-PCR products. Immunohistochemical analysis of Fhit expression in cervical tissues revealed strong immunoreactivity in nonneoplastic squamous and glandular cervical epithelium and marked reduction or loss of Fhit protein in 28 of 33 (76%) primary cervical carcinomas. In those cervical cancer cell lines and primary tumors with exclusively aberrant or absent FHIT transcripts by RT-PCR, Fhit protein expression was always markedly reduced or absent. The frequent alterations in FHIT expression in many cervical carcinomas, but not in normal tissues, suggest that FHIT gene alterations may play an important role in cervical tumorigenesis.
UR - http://www.scopus.com/inward/record.url?scp=0030729465&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030729465&partnerID=8YFLogxK
M3 - Article
C2 - 9354423
AN - SCOPUS:0030729465
SN - 0008-5472
VL - 57
SP - 4692
EP - 4698
JO - Cancer Research
JF - Cancer Research
IS - 21
ER -