Local field potentials mitigate decline in motor decoding performance caused by loss of spiking units

Kyle M. Rupp, Marc H. Schieber, Nitish V. Thakor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The technology underlying brain computer interfaces has recently undergone rapid development, though a variety of issues remain that are currently preventing it from becoming a viable clinical assistive tool. Though decoding of motor output has been shown to be particularly effective when using spikes, these decoders tend to degrade with the loss of subsets of these signals. One potential solution to this problem is to include features derived from LFP signals in the decoder to mitigate these negative effects. We explored this solution and found that the decline in decoding performance that accompanies spiking unit dropout was significantly reduced when LFP power features were included in the decoder. Additionally, high frequency LFP features in the 100-170 Hz band were more effective than low frequency LFP features in the 2-4 Hz band at protecting the decoder from a dropoff in performance. LFP power appears to be an effective signal to improve the robustness of spiking unit decoders. Future studies will explore online classification and performance improvements in chronic implants by the proposed method.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1298-1301
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
CountryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • Medicine(all)

Fingerprint Dive into the research topics of 'Local field potentials mitigate decline in motor decoding performance caused by loss of spiking units'. Together they form a unique fingerprint.

  • Cite this

    Rupp, K. M., Schieber, M. H., & Thakor, N. V. (2014). Local field potentials mitigate decline in motor decoding performance caused by loss of spiking units. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 (pp. 1298-1301). [6943836] (2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMBC.2014.6943836