Learned control of heart rate during dynamic exercise in nonhuman primates

M. I. Talan, B. T. Engel

Research output: Contribution to journalArticle

Abstract

The purpose of this study was to describe an animal model to test the relationships among the cardiovascular, pulmonary, and somatomotor command systems during exercise. Using operant conditioning, three chronically chaired monkeys (Macaca mulatta) were trained to exercise (to lift weights repeatedly), to attenuate their heart rate responses, and finally, both conditions were combined so that the animals were required to exercise and attenuate their heart rates. Heart rate, systolic and diastolic blood pressure, rate-pressure product, O2 and CO2 concentration in expired air, and number of weight lifts were recorded and compared between the two conditions, i.e., exercise only and combined exercise and heart rate slowing. In all animals heart rate increases in response to exercise were significantly less (P <0.05) during combined conditions than during exercise only: the mean heart rate increase was 41 beats/min less during combined sessions than during exercise only sessions for monkey 1, 13.5 beats/min less for monkey 2, and 9 beats/min less for moneky 3. Rate-pressure product showed a consisten difference across animals paralleling the heart rate differences. This acquired response did not involve other cardiovascular and pulmonary parameters, which did not change systematically across animals. However, the pattern of cardiovascular reactivity in relation to O2 consumption (linear regression of heart rate and systolic or diastolic blood pressure on change in O2 consumption over many experiments) was attenuated during combined sessions relative to exercise only experiments. The relative attenuation of heart rate during combined sessions also remained significant when both experimental conditions were equated on the basis of work done. Therefore, this animal model shows a dissociation of cardiovascular, somatomotor, and pulmonary effects of central command.

Original languageEnglish (US)
Pages (from-to)545-553
Number of pages9
JournalJournal of Applied Physiology
Volume61
Issue number2
StatePublished - 1986
Externally publishedYes

Fingerprint

Primates
Heart Rate
Blood Pressure
Haplorhini
Lung
Animal Models
Operant Conditioning
Pressure
Weights and Measures
Macaca mulatta
Linear Models
Air

ASJC Scopus subject areas

  • Endocrinology
  • Physiology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Cite this

Learned control of heart rate during dynamic exercise in nonhuman primates. / Talan, M. I.; Engel, B. T.

In: Journal of Applied Physiology, Vol. 61, No. 2, 1986, p. 545-553.

Research output: Contribution to journalArticle

Talan, M. I. ; Engel, B. T. / Learned control of heart rate during dynamic exercise in nonhuman primates. In: Journal of Applied Physiology. 1986 ; Vol. 61, No. 2. pp. 545-553.
@article{766291a1dded415c84b346f021f79cf7,
title = "Learned control of heart rate during dynamic exercise in nonhuman primates",
abstract = "The purpose of this study was to describe an animal model to test the relationships among the cardiovascular, pulmonary, and somatomotor command systems during exercise. Using operant conditioning, three chronically chaired monkeys (Macaca mulatta) were trained to exercise (to lift weights repeatedly), to attenuate their heart rate responses, and finally, both conditions were combined so that the animals were required to exercise and attenuate their heart rates. Heart rate, systolic and diastolic blood pressure, rate-pressure product, O2 and CO2 concentration in expired air, and number of weight lifts were recorded and compared between the two conditions, i.e., exercise only and combined exercise and heart rate slowing. In all animals heart rate increases in response to exercise were significantly less (P <0.05) during combined conditions than during exercise only: the mean heart rate increase was 41 beats/min less during combined sessions than during exercise only sessions for monkey 1, 13.5 beats/min less for monkey 2, and 9 beats/min less for moneky 3. Rate-pressure product showed a consisten difference across animals paralleling the heart rate differences. This acquired response did not involve other cardiovascular and pulmonary parameters, which did not change systematically across animals. However, the pattern of cardiovascular reactivity in relation to O2 consumption (linear regression of heart rate and systolic or diastolic blood pressure on change in O2 consumption over many experiments) was attenuated during combined sessions relative to exercise only experiments. The relative attenuation of heart rate during combined sessions also remained significant when both experimental conditions were equated on the basis of work done. Therefore, this animal model shows a dissociation of cardiovascular, somatomotor, and pulmonary effects of central command.",
author = "Talan, {M. I.} and Engel, {B. T.}",
year = "1986",
language = "English (US)",
volume = "61",
pages = "545--553",
journal = "Journal of Applied Physiology",
issn = "0161-7567",
publisher = "American Physiological Society",
number = "2",

}

TY - JOUR

T1 - Learned control of heart rate during dynamic exercise in nonhuman primates

AU - Talan, M. I.

AU - Engel, B. T.

PY - 1986

Y1 - 1986

N2 - The purpose of this study was to describe an animal model to test the relationships among the cardiovascular, pulmonary, and somatomotor command systems during exercise. Using operant conditioning, three chronically chaired monkeys (Macaca mulatta) were trained to exercise (to lift weights repeatedly), to attenuate their heart rate responses, and finally, both conditions were combined so that the animals were required to exercise and attenuate their heart rates. Heart rate, systolic and diastolic blood pressure, rate-pressure product, O2 and CO2 concentration in expired air, and number of weight lifts were recorded and compared between the two conditions, i.e., exercise only and combined exercise and heart rate slowing. In all animals heart rate increases in response to exercise were significantly less (P <0.05) during combined conditions than during exercise only: the mean heart rate increase was 41 beats/min less during combined sessions than during exercise only sessions for monkey 1, 13.5 beats/min less for monkey 2, and 9 beats/min less for moneky 3. Rate-pressure product showed a consisten difference across animals paralleling the heart rate differences. This acquired response did not involve other cardiovascular and pulmonary parameters, which did not change systematically across animals. However, the pattern of cardiovascular reactivity in relation to O2 consumption (linear regression of heart rate and systolic or diastolic blood pressure on change in O2 consumption over many experiments) was attenuated during combined sessions relative to exercise only experiments. The relative attenuation of heart rate during combined sessions also remained significant when both experimental conditions were equated on the basis of work done. Therefore, this animal model shows a dissociation of cardiovascular, somatomotor, and pulmonary effects of central command.

AB - The purpose of this study was to describe an animal model to test the relationships among the cardiovascular, pulmonary, and somatomotor command systems during exercise. Using operant conditioning, three chronically chaired monkeys (Macaca mulatta) were trained to exercise (to lift weights repeatedly), to attenuate their heart rate responses, and finally, both conditions were combined so that the animals were required to exercise and attenuate their heart rates. Heart rate, systolic and diastolic blood pressure, rate-pressure product, O2 and CO2 concentration in expired air, and number of weight lifts were recorded and compared between the two conditions, i.e., exercise only and combined exercise and heart rate slowing. In all animals heart rate increases in response to exercise were significantly less (P <0.05) during combined conditions than during exercise only: the mean heart rate increase was 41 beats/min less during combined sessions than during exercise only sessions for monkey 1, 13.5 beats/min less for monkey 2, and 9 beats/min less for moneky 3. Rate-pressure product showed a consisten difference across animals paralleling the heart rate differences. This acquired response did not involve other cardiovascular and pulmonary parameters, which did not change systematically across animals. However, the pattern of cardiovascular reactivity in relation to O2 consumption (linear regression of heart rate and systolic or diastolic blood pressure on change in O2 consumption over many experiments) was attenuated during combined sessions relative to exercise only experiments. The relative attenuation of heart rate during combined sessions also remained significant when both experimental conditions were equated on the basis of work done. Therefore, this animal model shows a dissociation of cardiovascular, somatomotor, and pulmonary effects of central command.

UR - http://www.scopus.com/inward/record.url?scp=0022512581&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022512581&partnerID=8YFLogxK

M3 - Article

C2 - 3745046

AN - SCOPUS:0022512581

VL - 61

SP - 545

EP - 553

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 0161-7567

IS - 2

ER -