TY - GEN
T1 - Joint estimation of respiratory motion and activity in 4D pet using CT side information
AU - Jacobson, Matthew W.
AU - Fessler, Jeffrey A.
PY - 2006/11/17
Y1 - 2006/11/17
N2 - In previous work, we proposed a Poisson statistical model for gated PET data in which the distribution was parametrized in terms of both image intensity and motion parameters. The motion parameters related the activity image in each gate to that of a base image in some fixed gate. By doing maximum loglikelihood (ML) estimation of all parameters simultaneously, one obtains an estimate of the base gate image that exploits the full set of measured sinogram data. Previously, this joint ML approach was compared, in a highly simplified single-slice setting, to more conventional methods. Performance was measured in terms of the recovery of tracer uptake in a synthetic lung nodule. This paper reports the extension to 3D with much more realistic simulated motion. Furthermore, in addition to pure ML estimation, we consider the use of side information from a breath-hold CT scan to facilitate regularization, while preserving hot lesions of the kind seen in FDG oncology studies.
AB - In previous work, we proposed a Poisson statistical model for gated PET data in which the distribution was parametrized in terms of both image intensity and motion parameters. The motion parameters related the activity image in each gate to that of a base image in some fixed gate. By doing maximum loglikelihood (ML) estimation of all parameters simultaneously, one obtains an estimate of the base gate image that exploits the full set of measured sinogram data. Previously, this joint ML approach was compared, in a highly simplified single-slice setting, to more conventional methods. Performance was measured in terms of the recovery of tracer uptake in a synthetic lung nodule. This paper reports the extension to 3D with much more realistic simulated motion. Furthermore, in addition to pure ML estimation, we consider the use of side information from a breath-hold CT scan to facilitate regularization, while preserving hot lesions of the kind seen in FDG oncology studies.
UR - http://www.scopus.com/inward/record.url?scp=33750960857&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750960857&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:33750960857
SN - 0780395778
SN - 9780780395770
T3 - 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings
SP - 275
EP - 278
BT - 2006 3rd IEEE International Symposium on Biomedical Imaging
T2 - 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro
Y2 - 6 April 2006 through 9 April 2006
ER -