ITEP: An integrated toolkit for exploration of microbial pan-genomes

Matthew N. Benedict, James R. Henriksen, William W. Metcalf, Rachel J. Whitaker, Nathan D. Price

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

Background: Comparative genomics is a powerful approach for studying variation in physiological traits as well as the evolution and ecology of microorganisms. Recent technological advances have enabled sequencing large numbers of related genomes in a single project, requiring computational tools for their integrated analysis. In particular, accurate annotations and identification of gene presence and absence are critical for understanding and modeling the cellular physiology of newly sequenced genomes. Although many tools are available to compare the gene contents of related genomes, new tools are necessary to enable close examination and curation of protein families from large numbers of closely related organisms, to integrate curation with the analysis of gain and loss, and to generate metabolic networks linking the annotations to observed phenotypes.Results: We have developed ITEP, an Integrated Toolkit for Exploration of microbial Pan-genomes, to curate protein families, compute similarities to externally-defined domains, analyze gene gain and loss, and generate draft metabolic networks from one or more curated reference network reconstructions in groups of related microbial species among which the combination of core and variable genes constitute the their "pan-genomes". The ITEP toolkit consists of: (1) a series of modular command-line scripts for identification, comparison, curation, and analysis of protein families and their distribution across many genomes; (2) a set of Python libraries for programmatic access to the same data; and (3) pre-packaged scripts to perform common analysis workflows on a collection of genomes. ITEP's capabilities include de novo protein family prediction, ortholog detection, analysis of functional domains, identification of core and variable genes and gene regions, sequence alignments and tree generation, annotation curation, and the integration of cross-genome analysis and metabolic networks for study of metabolic network evolution.Conclusions: ITEP is a powerful, flexible toolkit for generation and curation of protein families. ITEP's modular design allows for straightforward extension as analysis methods and tools evolve. By integrating comparative genomics with the development of draft metabolic networks, ITEP harnesses the power of comparative genomics to build confidence in links between genotype and phenotype and helps disambiguate gene annotations when they are evaluated in both evolutionary and metabolic network contexts.

Original languageEnglish (US)
Article number8
JournalBMC genomics
Volume15
Issue number1
DOIs
StatePublished - Jan 3 2014
Externally publishedYes

Keywords

  • Clustering
  • Comparative genomics
  • Curation
  • Database
  • Metabolic networks
  • Orthologs
  • Pan-genome
  • Phylogenetics

ASJC Scopus subject areas

  • Biotechnology
  • Genetics

Fingerprint

Dive into the research topics of 'ITEP: An integrated toolkit for exploration of microbial pan-genomes'. Together they form a unique fingerprint.

Cite this