TY - JOUR
T1 - Isoform-specific inhibition of L-type calcium channels by dihydropyridines is independent of isoform-specific gating properties
AU - Hu, Hai
AU - Marban, Eduardo
PY - 1998/5
Y1 - 1998/5
N2 - Dihydropyridines (DHPs) block L-type Ca2+ channels more potently at depolarized membrane potentials, consistent with high affinity binding to the inactivated state. Nisoldipine (a DHP antagonist) blocks the smooth muscle channel more potently than the cardiac one, a phenomenon observed not only in native channels but also in expressed channels. We examined whether this tissue specificity was attributable to differences of inactivation in the two channel types. We expressed cardiac or smooth muscle α1C subunits in combination with β2a and α2/δ subunits in human embryonic kidney cells, and used 2 mM Ca2+ as the permeant ion. This system thus reproduces the in vivo topology and charge carrier of the channels while facilitating comparison of the two α1C splice variants. Both voltage-dependent and isoform-specific sensitivity of 10 nM nisoldipine inhibition of the channel were demonstrated, with the use of -100 mV as the holding potential for fully reprimed channels and -65 mV to populate the inactivated state. Under drug- free conditions, we characterized fast inactivation (1-sec prepulses) and slow inactivation (3 min prepulses) in the two isoforms. Inactivation parameters were not statistically different in the two channel isoforms; if anything, cardiac channels tended to inactivate more than the smooth muscle channels at relevant voltages. Likewise, the voltage-dependent activation was identical in the two isoforms. We thus conclude that the more potent nisoldipine inhibition of smooth muscle versus cardiac L-type Ca2+ channels is not attributable to differences in channel inactivation or activation. Intrinsic, gating-independent DHP receptor binding affinity differences must be invoked to explain the isoform-specific sensitivity of the DHP block.
AB - Dihydropyridines (DHPs) block L-type Ca2+ channels more potently at depolarized membrane potentials, consistent with high affinity binding to the inactivated state. Nisoldipine (a DHP antagonist) blocks the smooth muscle channel more potently than the cardiac one, a phenomenon observed not only in native channels but also in expressed channels. We examined whether this tissue specificity was attributable to differences of inactivation in the two channel types. We expressed cardiac or smooth muscle α1C subunits in combination with β2a and α2/δ subunits in human embryonic kidney cells, and used 2 mM Ca2+ as the permeant ion. This system thus reproduces the in vivo topology and charge carrier of the channels while facilitating comparison of the two α1C splice variants. Both voltage-dependent and isoform-specific sensitivity of 10 nM nisoldipine inhibition of the channel were demonstrated, with the use of -100 mV as the holding potential for fully reprimed channels and -65 mV to populate the inactivated state. Under drug- free conditions, we characterized fast inactivation (1-sec prepulses) and slow inactivation (3 min prepulses) in the two isoforms. Inactivation parameters were not statistically different in the two channel isoforms; if anything, cardiac channels tended to inactivate more than the smooth muscle channels at relevant voltages. Likewise, the voltage-dependent activation was identical in the two isoforms. We thus conclude that the more potent nisoldipine inhibition of smooth muscle versus cardiac L-type Ca2+ channels is not attributable to differences in channel inactivation or activation. Intrinsic, gating-independent DHP receptor binding affinity differences must be invoked to explain the isoform-specific sensitivity of the DHP block.
UR - http://www.scopus.com/inward/record.url?scp=0031781648&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031781648&partnerID=8YFLogxK
M3 - Article
C2 - 9584217
AN - SCOPUS:0031781648
VL - 53
SP - 902
EP - 907
JO - Molecular Pharmacology
JF - Molecular Pharmacology
SN - 0026-895X
IS - 5
ER -