IRIS: Integrated Robotic Intraocular Snake

Xingchi He, Vincent Van Geirt, Peter Gehlbach, Russell Taylor, Iulian Iordachita

Research output: Contribution to journalConference article

Abstract

Retinal surgery is one of the most technically challenging surgical disciplines. Many robotic systems have been developed to enhance the surgical capabilities. However, very few of them provide the surgeon the dexterity within the patient's eye to enable more flexible, more advanced surgical procedures. This paper presents a sub-millimeter intraocular dexterous robot, the Integrated Robotic Intraocular Snake (IRIS). The variable neutral-line mechanism is used to provide very high dexterity with a very small form factor. The IRIS distal dexterous unit is 0.9 mm in diameter and about 3 mm in length. It enables two rotational degrees of freedom at the distal end of the ophthalmic instruments. The analysis on contact mechanics provides a reference for the adjustment of the wire pretension. Redundant actuation is implemented by using one motor for each wire. A motion scaling transmission is developed to overcome the suboptimal resolution of the motors. A scale-up model of the IRIS is built for initial experimental evaluation. Preliminary results show that the scale-up IRIS can provide large range of motion. For given bending angle, the kinematic model can estimate the desired wire translation when the friction is not significant. The first prototype of the actual-scale IRIS is assembled and tested.

Original languageEnglish (US)
Article number7139426
Pages (from-to)1764-1769
Number of pages6
JournalProceedings - IEEE International Conference on Robotics and Automation
Volume2015-June
Issue numberJune
DOIs
StatePublished - Jun 29 2015
Event2015 IEEE International Conference on Robotics and Automation, ICRA 2015 - Seattle, United States
Duration: May 26 2015May 30 2015

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'IRIS: Integrated Robotic Intraocular Snake'. Together they form a unique fingerprint.

  • Cite this