Ionic current correlations are ubiquitous across phyla

Trinh Tran, Cagri T. Unal, Laszlo Zaborszky, Horacio Rotstein, Alfredo Kirkwood, Jorge Golowasch

Research output: Contribution to journalArticlepeer-review


Ionic currents, whether measured as conductance amplitude or as ion channel transcript levels, can vary many-fold within a population of identified neurons. This variability has been observed in multiple invertebrate neuronal types, but they do so in a coordinated manner such that their magnitudes are correlated. These conductance correlations are thought to reflect a tight homeostasis of cellular excitability that enhances the robustness and stability of neuronal activity over long stretches of time. Notably, although such ionic current correlations are well documented in invertebrates, they have not been reported in vertebrates. Here we demonstrate with two examples, identified mouse hippocampal granule cells and cholinergic basal forebrain neurons, that ionic current correlations is a ubiquitous phenomenon expressed by a number of species across phyla.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - May 12 2017


  • basal forebrain
  • circadian
  • correlations
  • hippocampus
  • homeostasis

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Ionic current correlations are ubiquitous across phyla'. Together they form a unique fingerprint.

Cite this