Investigation of ultra low-dose scans in the context of quantum-counting clinical CT

T. Weidinger, T. M. Buzug, T. Flohr, G. S.K. Fung, S. G. Kappler, K. Stierstorfer, B. M.W. Tsui

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2012
Subtitle of host publicationPhysics of Medical Imaging
DOIs
StatePublished - May 4 2012
EventMedical Imaging 2012: Physics of Medical Imaging - San Diego, CA, United States
Duration: Feb 5 2012Feb 8 2012

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume8313
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2012: Physics of Medical Imaging
CountryUnited States
CitySan Diego, CA
Period2/5/122/8/12

Keywords

  • CDTE
  • CT
  • LOW-DOSE
  • QUANTUM COUNTING

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Investigation of ultra low-dose scans in the context of quantum-counting clinical CT'. Together they form a unique fingerprint.

Cite this