Investigation of a Dual modal method for bone pathologies using quantitative ultrasound and Photoacoustics

Idan Steinberg, Israel Gannot, Avishay Eyal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Osteoporosis is a widespread disease that has a catastrophic impact on patient's lives and overwhelming related healthcare costs. In recent works, we have developed a multi-spectral, frequency domain photoacoustic method for the evaluation of bone pathologies. This method has great advantages over pure ultrasonic or optical methods as it provides both molecular information from the bone absorption spectrum and bone mechanical status from the characteristics of the ultrasound propagation. These characteristics include both the Speed of Sound (SOS) and Broadband Ultrasonic Attenuation (BUA). To test the method's quantitative predictions, we have constructed a combined ultrasound and photoacoustic setup. Here, we experimentally present a dual modality system, and compares between the methods on bone samples in-vitro. The differences between the two modalities are shown to provide valuable insight into the bone structure and functional status.

Original languageEnglish (US)
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2015
EditorsAlexander A. Oraevsky, Lihong V. Wang
PublisherSPIE
ISBN (Electronic)9781628414134
DOIs
StatePublished - Jan 1 2015
EventPhotons Plus Ultrasound: Imaging and Sensing 2015 - San Francisco, United States
Duration: Feb 8 2015Feb 10 2015

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9323
ISSN (Print)1605-7422

Other

OtherPhotons Plus Ultrasound: Imaging and Sensing 2015
Country/TerritoryUnited States
CitySan Francisco
Period2/8/152/10/15

Keywords

  • Dual modality
  • Osteoporosis
  • Photoacoustics
  • Quantitative ultrasound

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Investigation of a Dual modal method for bone pathologies using quantitative ultrasound and Photoacoustics'. Together they form a unique fingerprint.

Cite this