Intrinsic functional brain mapping in reconstructed 4D magnetic susceptibility (χ) data space

Zikuan Chen, Vince Calhoun

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Background: By solving an inverse problem of T2*-weighted magnetic resonance imaging for a dynamic fMRI study, we reconstruct a 4D magnetic susceptibility source (χ) data space for intrinsic functional mapping. New methods: A 4D phase dataset is calculated from a 4D complex fMRI dataset. The background field and phase wrapping effect are removed by a Laplacian technique. A 3D χ source map is reconstructed from a 3D phase image by a computed inverse MRI (CIMRI) scheme. A 4D χ data space is reconstructed by repeating the 3D χ source reconstruction for each time point. A functional map is calculated by a temporal correlation between voxel signals in the 4D χ space and the timecourse of the task paradigm. Results: With a finger-tapping experiment, we obtain two 3D functional mappings in the 4D magnitude data space and in the reconstructed 4D χ data space. We find that the χ-based functional mapping reveals co-occurrence of bidirectional responses in a 3D activation map that is different from the conventional magnitude-based mapping. Comparison with existing methods: The χ-based functional mapping can also be achieved by a 3D deconvolution of a phase activation map. Based on a subject experimental comparison, we show that the 4D χ tomography method could produce a similar χ activation map as obtained by the 3D deconvolution method. Conclusion: By removing the dipole effect and other fMRI technological contaminations, 4D χ tomography provides a 4D χ data space that allows a more direct and truthful functional mapping of a brain activity.

Original languageEnglish (US)
Pages (from-to)85-93
Number of pages9
JournalJournal of Neuroscience Methods
Volume241
DOIs
StatePublished - Feb 5 2015

Keywords

  • 4D magnetic susceptibility (χ) tomography
  • Blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI)
  • Dipole inversion
  • Intrinsic functional brain mapping
  • T2
  • T2
  • imaging
  • magnitude and phase images

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Intrinsic functional brain mapping in reconstructed 4D magnetic susceptibility (χ) data space'. Together they form a unique fingerprint.

Cite this