TY - JOUR
T1 - Internal tissue references for 18Fluorodeoxyglucose vascular inflammation imaging
T2 - Implications for cardiovascular risk stratification and clinical trials
AU - Ahlman, Mark A.
AU - Vigneault, Davis M.
AU - Sandfort, Veit
AU - Maass-Moreno, Roberto
AU - Dave, Jenny
AU - Sadek, Ahmed
AU - Mallek, Marissa B.
AU - Selwaness, Mariana A.F.
AU - Herscovitch, Peter
AU - Mehta, Nehal N.
AU - Bluemke, David A.
N1 - Publisher Copyright:
© 2017, Public Library of Science. All rights reserved. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
PY - 2017/11
Y1 - 2017/11
N2 - Introduction: 18Fluorodeoxyglucose (FDG) positron emission tomography (PET) uptake in the artery wall correlates with active inflammation. However, in part due to the low spatial resolution of PET, variation in the apparent arterial wall signal may be influenced by variation in blood FDG activity that cannot be fully corrected for using typical normalization strategies. The purpose of this study was to evaluate the ability of the current common methods to normalize for blood activity and to investigate alternative methods for more accurate quantification of vascular inflammation. Materials and methods: The relationship between maximum FDG aorta wall activity and mean blood activity was evaluated in 37 prospectively enrolled subjects aged 55 years or more, treated for hyperlipidemia. Target maximum aorta standardized uptake value (SUV) and mean background reference tissue activity (blood, spleen, liver) were recorded. Target-to-background ratios (TBR) and arterial maximum activity minus blood activity were calculated. Multivariable regression was conducted, predicting uptake values based on variation in background reference and target tissue FDG uptake; adjusting for gender, age, lean body mass (LBM), blood glucose, blood pool activity, and glomerular filtration rate (GFR), where appropriate. Results: Blood pool activity was positively associated with maximum artery wall SUV (β = 5.61, P< 0.0001) as well as mean liver (β = 6.23, P<0.0001) and spleen SUV (β = 5.20, P<0.0001). Artery wall activity divided by blood activity (TBRBlood) or subtraction of blood activity did not remove the statistically significant relationship to blood activity. Blood pool activity was not related to TBRliver and TBRspleen (β = −0.36, P = NS and β = −0.58, P = NS, respectively) Conclusions: In otherwise healthy individuals treated for hyperlipidemia, blood FDG activity is associated with artery wall activity. However, variation in blood activity may mask artery wall signal reflective of inflammation, which requires normalization. Blood-based TBR and subtraction do not sufficiently adjust for blood activity. Warranting further investigation, background reference tissues with cellular uptake such as the liver and spleen may better adjust for variation in blood activity to improve assessment of vascular activity.
AB - Introduction: 18Fluorodeoxyglucose (FDG) positron emission tomography (PET) uptake in the artery wall correlates with active inflammation. However, in part due to the low spatial resolution of PET, variation in the apparent arterial wall signal may be influenced by variation in blood FDG activity that cannot be fully corrected for using typical normalization strategies. The purpose of this study was to evaluate the ability of the current common methods to normalize for blood activity and to investigate alternative methods for more accurate quantification of vascular inflammation. Materials and methods: The relationship between maximum FDG aorta wall activity and mean blood activity was evaluated in 37 prospectively enrolled subjects aged 55 years or more, treated for hyperlipidemia. Target maximum aorta standardized uptake value (SUV) and mean background reference tissue activity (blood, spleen, liver) were recorded. Target-to-background ratios (TBR) and arterial maximum activity minus blood activity were calculated. Multivariable regression was conducted, predicting uptake values based on variation in background reference and target tissue FDG uptake; adjusting for gender, age, lean body mass (LBM), blood glucose, blood pool activity, and glomerular filtration rate (GFR), where appropriate. Results: Blood pool activity was positively associated with maximum artery wall SUV (β = 5.61, P< 0.0001) as well as mean liver (β = 6.23, P<0.0001) and spleen SUV (β = 5.20, P<0.0001). Artery wall activity divided by blood activity (TBRBlood) or subtraction of blood activity did not remove the statistically significant relationship to blood activity. Blood pool activity was not related to TBRliver and TBRspleen (β = −0.36, P = NS and β = −0.58, P = NS, respectively) Conclusions: In otherwise healthy individuals treated for hyperlipidemia, blood FDG activity is associated with artery wall activity. However, variation in blood activity may mask artery wall signal reflective of inflammation, which requires normalization. Blood-based TBR and subtraction do not sufficiently adjust for blood activity. Warranting further investigation, background reference tissues with cellular uptake such as the liver and spleen may better adjust for variation in blood activity to improve assessment of vascular activity.
UR - http://www.scopus.com/inward/record.url?scp=85033705784&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85033705784&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0187995
DO - 10.1371/journal.pone.0187995
M3 - Article
C2 - 29131857
AN - SCOPUS:85033705784
VL - 12
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 11
M1 - e0187995
ER -