Intensity warping for multisite MRI harmonization

NAIMS Cooperative

Research output: Contribution to journalArticlepeer-review

Abstract

In multisite neuroimaging studies there is often unwanted technical variation across scanners and sites. These “scanner effects” can hinder detection of biological features of interest, produce inconsistent results, and lead to spurious associations. We assess scanner effects in two brain magnetic resonance imaging (MRI) studies where subjects were measured on multiple scanners within a short time frame, so that one could assume any differences between images were due to technical rather than biological effects. We propose mica (multisite image harmonization by CDF alignment), a tool to harmonize images taken on different scanners by identifying and removing within-subject scanner effects. Our goals in the present study were to (1) establish a method that removes scanner effects by leveraging multiple scans collected on the same subject, and, building on this, (2) develop a technique to quantify scanner effects in large multisite trials so these can be reduced as a preprocessing step. We found that unharmonized images were highly variable across site and scanner type, and our method effectively removed this variability by warping intensity distributions. We further studied the ability to predict intensity harmonization results for a scan taken on an existing subject at a new site using cross-validation.

Original languageEnglish (US)
JournalUnknown Journal
DOIs
StatePublished - Jun 21 2019

Keywords

  • Curve registration
  • Image densities
  • Image harmonization
  • Intensity normalization
  • Multisite imaging
  • Warping

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Intensity warping for multisite MRI harmonization'. Together they form a unique fingerprint.

Cite this