Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference: First patient studies

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2017
Subtitle of host publicationPhysics of Medical Imaging
PublisherSPIE
Volume10132
ISBN (Electronic)9781510607095
DOIs
StatePublished - 2017
EventMedical Imaging 2017: Physics of Medical Imaging - Orlando, United States
Duration: Feb 13 2017Feb 16 2017

Other

OtherMedical Imaging 2017: Physics of Medical Imaging
CountryUnited States
CityOrlando
Period2/13/172/16/17

Fingerprint

Computer-Assisted Image Processing
Image quality
Radiotherapy
Workflow
Planning
Computerized tomography
Surgery
Image-Guided Radiotherapy
Computer-Assisted Surgery
Patient Positioning
Cone-Beam Computed Tomography
planning
Imaging techniques
radiation therapy
Processing
Anatomy
Neck
Head
anatomy
histograms

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Cite this

Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference : First patient studies. / Zhang, Hao; Gang, Jianan; Lee, Junghoon; Wong, John; Stayman, Joseph Webster.

Medical Imaging 2017: Physics of Medical Imaging. Vol. 10132 SPIE, 2017. 1013211.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Zhang, H, Gang, J, Lee, J, Wong, J & Stayman, JW 2017, Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference: First patient studies. in Medical Imaging 2017: Physics of Medical Imaging. vol. 10132, 1013211, SPIE, Medical Imaging 2017: Physics of Medical Imaging, Orlando, United States, 2/13/17. https://doi.org/10.1117/12.2255513
@inproceedings{5938f2c820e14123a30551a6e3895eba,
title = "Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference: First patient studies",
abstract = "Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.",
author = "Hao Zhang and Jianan Gang and Junghoon Lee and John Wong and Stayman, {Joseph Webster}",
year = "2017",
doi = "10.1117/12.2255513",
language = "English (US)",
volume = "10132",
booktitle = "Medical Imaging 2017",
publisher = "SPIE",

}

TY - GEN

T1 - Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference

T2 - First patient studies

AU - Zhang, Hao

AU - Gang, Jianan

AU - Lee, Junghoon

AU - Wong, John

AU - Stayman, Joseph Webster

PY - 2017

Y1 - 2017

N2 - Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.

AB - Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.

UR - http://www.scopus.com/inward/record.url?scp=85020469309&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85020469309&partnerID=8YFLogxK

U2 - 10.1117/12.2255513

DO - 10.1117/12.2255513

M3 - Conference contribution

AN - SCOPUS:85020469309

VL - 10132

BT - Medical Imaging 2017

PB - SPIE

ER -