Integrating informative priors from experimental research with bayesian methods: An example from radiation epidemiology

Ghassan Hamra, David Richardson, Richard MacLehose, Steve Wing

Research output: Contribution to journalArticle

Abstract

Informative priors can be a useful tool for epidemiologists to handle problems of sparse data in regression modeling. It is sometimes the case that an investigator is studying a population exposed to two agents, X and Y, where Y is the agent of primary interest. Previous research may suggest that the exposures have different effects on the health outcome of interest, one being more harmful than the other. Such information may be derived from epidemiologic analyses; however, in the case where such evidence is unavailable, knowledge can be drawn from toxicologic studies or other experimental research. Unfortunately, using toxicologic findings to develop informative priors in epidemiologic analyses requires strong assumptions, with no established method for its utilization. We present a method to help bridge the gap between animal and cellular studies and epidemiologic research by specification of an order-constrained prior. We illustrate this approach using an example from radiation epidemiology.

Original languageEnglish (US)
Pages (from-to)90-95
Number of pages6
JournalEpidemiology
Volume24
Issue number1
DOIs
StatePublished - Jan 1 2013
Externally publishedYes

ASJC Scopus subject areas

  • Epidemiology

Fingerprint Dive into the research topics of 'Integrating informative priors from experimental research with bayesian methods: An example from radiation epidemiology'. Together they form a unique fingerprint.

  • Cite this