Initial experience in the use of integrated electroanatomic mapping with three-dimensional MR/CT images to guide catheter ablation of atrial fibrillation

Jun Dong, Timm Dickfeld, Darshan Dalal, Aamir Cheema, Chandrasekhar R. Vasamreddy, Charles A. Henrikson, Joseph E. Marine, Henry R. Halperin, Ronald D. Berger, Joao A.C. Lima, David A. Bluemke, Hugh Calkins

Research output: Contribution to journalArticle

Abstract

Introduction: No prior studies have reported the use of integrated electroanatomic mapping with preacquired magnetic resonance/computed tomographic (MR/CT) images to guide catheter ablation of atrial fibrillation (AF) in a series of patients. Methods and Results: Sixteen consecutive patients with drug-refractory AF underwent catheter ablation under the guidance of a three-dimensional (3D) electroanatomic mapping system (Carto, Biosense Webster, Inc., Diamond Bar, CA, USA). Gadolinium-enhanced MR (n = 8) or contrast-enhanced high-resolution CT (n = 8) imaging was performed within 1 day prior to the ablation procedures. Using a novel software package (CartoMerge, Biosense Webster, Inc.), the left atrium (LA) with pulmonary veins (PVs) was segmented and extracted for image registration. The segmented 3D MR/CT LA reconstruction was accurately registered to the real-time mapping space with a combination of landmark registration and surface registration. The registered 3D MR/CT LA reconstruction was successfully used to guide deployment of RF applications encircling the PVs. Upon completion of the circumferential lesions around the PVs, 32% of the PVs were electrically isolated. Guided by a circular mapping catheter, the remaining PVs were disconnected from the LA using a segmental approach. The distance between the surface of the registered 3D MR/CT LA reconstruction and multiple electroanatomic map points was 3.05 ± 0.41 mm. No complications were observed. Conclusions: Three-dimensional MR/CT images can be successfully extracted and registered to anatomically guided clinical AF ablations. The display of detailed and accurate anatomic information during the procedure enables tailored RF ablation to individual PV and LA anatomy.

Original languageEnglish (US)
Pages (from-to)459-466
Number of pages8
JournalJournal of cardiovascular electrophysiology
Volume17
Issue number5
DOIs
StatePublished - May 1 2006

    Fingerprint

Keywords

  • Ablation
  • Atrial fibrillation
  • Imaging
  • Integration

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Cite this