Inhibition of established micrometastases by targeted drug delivery via cell surface-associated GRP78

Yu Rebecca Miao, Bedrich L. Eckhardt, Yuan Cao, Renata Pasqualini, Pedram Argani, Wadih Arap, Robert G. Ramsay, Robin L. Anderson

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose: The major cause of morbidity in breast cancer is development of metastatic disease, for which few effective therapies exist. Because tumor cell dissemination is often an early event in breast cancer progression and can occur before diagnosis, new therapies need to focus on targeting established metastatic disease in secondary organs. We report an effective therapy based on targeting cell surface-localized glucose-regulated protein 78 (GRP78). GRP78 is expressed normally in the endoplasmic reticulum, but many tumors and disseminated tumor cells are subjected to environmental stresses and exhibit elevated levels of GRP78, some of which are localized at the plasma membrane. Experimental Design and Results: Here, we show that matched primary tumors and metastases from patients whodied from advanced breast cancer also express high levels of GRP78. We used a peptidomimetic targeting strategy that uses a known GRP78-binding peptide fused to a proapoptotic moiety [designated bone metastasis targeting peptide 78 (BMTP78)] and show that it can selectively kill breast cancer cells that express surface-localized GRP78. Furthermore, in preclinical metastasis models, we show that administration of BMTP78 can inhibit primary tumor growth as well as prolong overall survival by reducing the extent of outgrowth of established lung and bone micrometastases. Conclusions: The data presented here provide strong evidence that it is possible to induce cell death in established micrometastases by peptide-mediated targeting of cell surface-localized GRP in advanced breast cancers. The significance to patients with advanced breast cancer of a therapy that can reduce established metastatic disease should not be underestimated.

Original languageEnglish (US)
Pages (from-to)2107-2116
Number of pages10
JournalClinical Cancer Research
Volume19
Issue number8
DOIs
StatePublished - Apr 15 2013

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'Inhibition of established micrometastases by targeted drug delivery via cell surface-associated GRP78'. Together they form a unique fingerprint.

Cite this