Inherent variability of CT lung nodule measurements in vivo using semiautomated volumetric measurements

Lawrence R. Goodman, Meltem Gulsun, Lacey Washington, Paul G. Nagy, Kelly L. Piacsek

Research output: Contribution to journalArticlepeer-review

120 Scopus citations

Abstract

OBJECTIVE. The objective of our study was to evaluate repeatability and reproducibility of lung nodule volume measurements using volumetric nodule-sizing software. MATERIALS AND METHODS. Fifty nodules, less than 20 mm in diameter, in 29 patients were scanned with 1.25-mm collimation using MDCT (time 1 = T1). During the same session, two additional scans, using identical technique, were obtained through each nodule (T2, T3). Three observers working independently then obtained volumetric measurements using a semiautomated volumetric nodule-sizing software package. Qualitative nodule characterization was also performed. The Bland-Altman method for assessing measurement agreement was used to calculate the 95% limits for agreement for nodule volumes at T1, T2, and T3. RESULTS. Automated nodule segmentation was successful in 438 (97%) of 450 measurements. Forty-three nodules were available for final evaluation. Twenty-six nodules had well-defined edges, and 17 had irregular or spiculated margins. Seventeen were freestanding, 16 were juxtapleural, and 10 were juxtavascular in location. Average nodule volume was 345.5 mm3 (range, 49.3-1,434 mm3). The mean interobserver variability (repeatability) was 0.018% (SD = 0.73%), and the SD of the mean for the three contemporaneous scans (reproducibility) was 13.1% (confidence limits, ± 25.6%). SD and confidence limits narrowed as volumes increased. CONCLUSION. Volumetric measurements show minimal interobserver variability (0.018%) but an interscan SEM of 13.1% (confidence limits, ± 25.6%). Repeatability and reproducibility of volumetric measurements are better than those of linear measurements reported in the literature.

Original languageEnglish (US)
Pages (from-to)989-994
Number of pages6
JournalAmerican Journal of Roentgenology
Volume186
Issue number4
DOIs
StatePublished - Apr 2006
Externally publishedYes

Keywords

  • CT
  • CT image processing
  • CT technique
  • Chest imaging
  • Lung
  • Lung cancer
  • Lung nodule

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Inherent variability of CT lung nodule measurements in vivo using semiautomated volumetric measurements'. Together they form a unique fingerprint.

Cite this