Influx of kininogens into nasal secretions after antigen challenge of allergic individuals

C. R. Baumgarten, A. G. Togias, R. M. Naclerio, L. M. Lichtenstein, P. S. Norman, D. Proud

Research output: Contribution to journalArticlepeer-review

Abstract

We have recently demonstrated that kinins are generated in vivo after nasal challenge with antigen of allergic, but not nonallergic, individuals. The present study was undertaken as a first step in determining the mechanism(s) of kinin formation during the allergic reaction and was directed towards establishing the availability and origin of kininogens in nasal secretions. Allergic individuals (n = 6) and nonallergic controls (n = 5) were challenged with antigen; and by using specific radioimmunoassays, nasal washes, obtained before and after challenge, were assayed for high molecular weight kininogen (HMWK), total kininogen (TK), albumin, and kinins. Dramatic increases in HMWK (1,730 ± 510 ng/ml), TK (3,810 ± 1035 ng/ml), kinin (9.46 ± 1.75 ng/ml), and albumin (0.85 ± 0.2 mg /ml) were observed after challenge of allergic individuals which correlated (P < 0.001) with increase in histamine and N-α-tosyl-L-arginine methyl esterase activity and with the onset of clinical symptoms. For nonallergic individuals, levels of kininogens, albumin, and all mediators after antigen challenge were not different from base line. Linear regression analysis revealed excellent correlations (P < 0.001 in each case) between increases in HMWK, TK, kinin, and albumin during antigen titration experiments and between the time courses of appearance and disappearance of HMWK, TK, kinin, and albumin after antigen challenge. Gel filtration revealed no evidence of degradation products of kininogens in nasal washes. For each allergic individual the ratio of HMWK/TK in postchallenge nasal washes was similar to the ratio of these two proteins in the same individual's plasma. These data suggest that, during the allergic reaction, there is an increase in vasular permeability and a transudation of kininogens from plasma into nasal secretions, where they can provide substrate for kinin-forming enzymes.

Original languageEnglish (US)
Pages (from-to)191-197
Number of pages7
JournalJournal of Clinical Investigation
Volume76
Issue number1
DOIs
StatePublished - 1985

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Influx of kininogens into nasal secretions after antigen challenge of allergic individuals'. Together they form a unique fingerprint.

Cite this