Increased Level of Tumor Necrosis Factor-Alpha (TNF-α) Leads to Downregulation of Nitrergic Neurons Following Bilateral Cavernous Nerve Injury and Modulates Penile Smooth Tone

Hotaka Matsui, Nikolai A. Sopko, Jeffrey D. Campbell, Xiaopu Liu, Allison Reinhardt, Emmanuel Weyne, Fabio Castiglione, Maarten Albersen, Johanna L. Hannan, Trinity J. Bivalacqua

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Erectile dysfunction (ED) after injury to peripheral cavernous nerve (CN) is partly a result of inflammation in pelvic ganglia, suggesting that ED may be prevented by inhibiting neuroinflammation. Aim: The aim of this study is to examine temporal changes of TNF-α, after bilateral CN injury (BCNI), to evaluate effect of exogenous TNF-α on neurite outgrowth from major pelvic ganglion (MPG), and to investigate effect of TNF-α signal inhibition to evaluate effects of TNF-α on penile tone with TNF-α receptor knockout mice (TNFRKO). Methods: Seventy Sprague-Dawley rats were randomized to undergo BCNI or sham surgery. Sham rats’ MPGs were harvested after 48 hours, whereas BCNI groups’ MPGs were at 6, 12, 24, 48 hours, 7, or 14 days after surgery. qPCR was used to evaluate gene expression of markers for neuroinflammation in MPGs. Western blot was performed to evaluate TNF-α protein amount in MPGs. MPGs were harvested from healthy rats and cultured in Matrigel with TNF-α. Neurite outgrowth from MPGs was measured after 3 days, and TH and nNOS immunofluorescence was assessed. Wild type (WT) and TNFRKO mice were used to examine effect of TNF-α inhibition on smooth muscle function after BCNI. MPGs were harvested 48 hours after sham or BCNI surgery to evaluate gene expression of nNOS and TH. Outcomes: Gene expression of TNF-α signaling pathway, Schwann cell and macrophage markers, protein expression of TNF-α in MPGs, and penile smooth muscle function to electrical field stimulation (EFS) were evaluated. Results: BCNI increased gene and protein expression of TNF-α in MPGs. Exogenous TNF-α inhibited MPG neurite outgrowth. MPGs cultured with TNF-α had decreased gene expression of nNOS (P < .05). MPGs cultured with TNF-α had shorter nNOS+ neurites than TH+ neurites (P < .01). Gene expression of nNOS was enhanced in TNFRKO mice compared to WT mice (P < .01). WT mice showed enhanced smooth muscle contraction of penises of WT mice was enhanced to EFS, compared to TNFKO (P < .01). Penile smooth-muscle relaxation to EFS was greater in TNFKO mice compared to WT (P < .01). Clinical Translation: TNF-α inhibition may prevent ED after prostatectomy. Strength/Limitations: TNF-α inhibition might prevent loss of nitrergic nerve apoptosis after BCNI and preserve corporal smooth muscle function but further investigation is required to evaluate protein expression of nNOS in MPGs of TNFKO mice. Conclusions: TNF-α inhibited neurite outgrowth from MPGs by downregulating gene expression of nNOS and TNFRKO mice showed enhanced gene expression of nNOS and enhanced penile smooth-muscle relaxation. Matsui H, Sopko NA, Campbell JD, et al. Increased Level of Tumor Necrosis Factor-Alpha (TNF-α) Leads to Downregulation of Nitrergic Neurons Following Bilateral Cavernous Nerve Injury and Modulates Penile Smooth Tone. J Sex Med 2021;18:1181–1190.

Original languageEnglish (US)
Pages (from-to)1181-1190
Number of pages10
JournalJournal of Sexual Medicine
Volume18
Issue number7
DOIs
StatePublished - Jul 2021

Keywords

  • Erectile dysfunction
  • Neurite
  • Peripheral nerve injury
  • Prostatectomy
  • Tumor necrosis factor-alpha

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Increased Level of Tumor Necrosis Factor-Alpha (TNF-α) Leads to Downregulation of Nitrergic Neurons Following Bilateral Cavernous Nerve Injury and Modulates Penile Smooth Tone'. Together they form a unique fingerprint.

Cite this