Increase in rat aortic endothelial free calcium mediated by metabolically sensitive calcium release from endoplasmic reticulum

Roy Ziegelstein, Linda Cheng, Thomas R Aversano, Pamela Ouyang, Edward Lakatta, Howard S. Silverman

Research output: Contribution to journalArticle

Abstract

Objective: The aim was to examine the relationship between cellular metabolism and intracellular [Ca2+] in vascular endothelial cells, focusing on the timing, mechanism, and reversibility of intracellular [Ca2+] changes resulting from ATP depletion. Methods: Cultured rat aortic endothelial monolayers were loaded with indo-1 and exposed for 30 min to: (1) glucose-free buffer, (2) 10 mM deoxyglucose or iodoacetic acid (0.1 or 2.5 mM) to inhibit glycolysis, or (3) 2 mM NaCN to inhibit oxidative phosphorylation with or without glucose. In other experiments, the pH sensitive fluorescent indicator SNARF-1 was used to assess the relationship between observed changes in [Ca2+] and pH. Results: While glucose deprivation resulted in a minor increase in [Ca2+], glycolytic inhibition resulted in a larger, slowly developing, sustained increase in [Ca2+]. Endothelial [Ca2+] was not affected by inhibition of oxidative phosphorylation alone, whereas a rapid, sustained, and largely reversible increase (∼102 nM) occurred when NaCN exposure was combined with glucose deprivation. The increase in [Ca2+] during glucose-free NaCN exposure was not altered when calcium influx was prevented by removal of extracellular calcium, but was abolished following depletion of an intracellular calcium store by the endoplasmic reticular Ca2+-ATPase inhibitor thapsigargin. In SNARF-1 loaded monolayers, inhibition of glycolysis with iodoacetic acid decreased intracellular pH by 0.33(SEM 0.10) units whereas inhibition of oxidative phosphorylation in the absence of glucose increased intracellular pH by 0.17(0.05) units. While these divergent pH changes were noted, [Ca2+] increased in both groups. Conclusions: A metabolically sensitive endoplasmic reticular calcium store is rapidly and reversibly released in vascular endothelial cells. Endothelial [Ca2+] is shown to be dependent on glycolytic energy production. In the endothelial cell, brief periods of inhibition of oxidative phosphorylation in the absence of glucose rapidly affect intracellular calcium pools rather than leading to calcium influx due to non-specific cellular damage. Effects on intracellular pH alone cannot account for the changes in [Ca2+].Cardiovascular Research 1994;28:1433-1439.

Original languageEnglish (US)
Pages (from-to)1433-1439
Number of pages7
JournalCardiovascular Research
Volume28
Issue number9
DOIs
StatePublished - Jan 1 1994

Fingerprint

Endoplasmic Reticulum
Calcium
Glucose
Oxidative Phosphorylation
Iodoacetic Acid
Endothelial Cells
Glycolysis
Thapsigargin
Calcium-Transporting ATPases
Deoxyglucose
Buffers
Adenosine Triphosphate
Research

Keywords

  • Calcium
  • Cyanide
  • Endothelium
  • Metabolism
  • PH

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Cite this

@article{f1ff8a9addc447db81e195f2a8eee6e0,
title = "Increase in rat aortic endothelial free calcium mediated by metabolically sensitive calcium release from endoplasmic reticulum",
abstract = "Objective: The aim was to examine the relationship between cellular metabolism and intracellular [Ca2+] in vascular endothelial cells, focusing on the timing, mechanism, and reversibility of intracellular [Ca2+] changes resulting from ATP depletion. Methods: Cultured rat aortic endothelial monolayers were loaded with indo-1 and exposed for 30 min to: (1) glucose-free buffer, (2) 10 mM deoxyglucose or iodoacetic acid (0.1 or 2.5 mM) to inhibit glycolysis, or (3) 2 mM NaCN to inhibit oxidative phosphorylation with or without glucose. In other experiments, the pH sensitive fluorescent indicator SNARF-1 was used to assess the relationship between observed changes in [Ca2+] and pH. Results: While glucose deprivation resulted in a minor increase in [Ca2+], glycolytic inhibition resulted in a larger, slowly developing, sustained increase in [Ca2+]. Endothelial [Ca2+] was not affected by inhibition of oxidative phosphorylation alone, whereas a rapid, sustained, and largely reversible increase (∼102 nM) occurred when NaCN exposure was combined with glucose deprivation. The increase in [Ca2+] during glucose-free NaCN exposure was not altered when calcium influx was prevented by removal of extracellular calcium, but was abolished following depletion of an intracellular calcium store by the endoplasmic reticular Ca2+-ATPase inhibitor thapsigargin. In SNARF-1 loaded monolayers, inhibition of glycolysis with iodoacetic acid decreased intracellular pH by 0.33(SEM 0.10) units whereas inhibition of oxidative phosphorylation in the absence of glucose increased intracellular pH by 0.17(0.05) units. While these divergent pH changes were noted, [Ca2+] increased in both groups. Conclusions: A metabolically sensitive endoplasmic reticular calcium store is rapidly and reversibly released in vascular endothelial cells. Endothelial [Ca2+] is shown to be dependent on glycolytic energy production. In the endothelial cell, brief periods of inhibition of oxidative phosphorylation in the absence of glucose rapidly affect intracellular calcium pools rather than leading to calcium influx due to non-specific cellular damage. Effects on intracellular pH alone cannot account for the changes in [Ca2+].Cardiovascular Research 1994;28:1433-1439.",
keywords = "Calcium, Cyanide, Endothelium, Metabolism, PH",
author = "Roy Ziegelstein and Linda Cheng and Aversano, {Thomas R} and Pamela Ouyang and Edward Lakatta and Silverman, {Howard S.}",
year = "1994",
month = "1",
day = "1",
doi = "10.1093/cvr/28.9.1433",
language = "English (US)",
volume = "28",
pages = "1433--1439",
journal = "Cardiovascular Research",
issn = "0008-6363",
publisher = "Oxford University Press",
number = "9",

}

TY - JOUR

T1 - Increase in rat aortic endothelial free calcium mediated by metabolically sensitive calcium release from endoplasmic reticulum

AU - Ziegelstein, Roy

AU - Cheng, Linda

AU - Aversano, Thomas R

AU - Ouyang, Pamela

AU - Lakatta, Edward

AU - Silverman, Howard S.

PY - 1994/1/1

Y1 - 1994/1/1

N2 - Objective: The aim was to examine the relationship between cellular metabolism and intracellular [Ca2+] in vascular endothelial cells, focusing on the timing, mechanism, and reversibility of intracellular [Ca2+] changes resulting from ATP depletion. Methods: Cultured rat aortic endothelial monolayers were loaded with indo-1 and exposed for 30 min to: (1) glucose-free buffer, (2) 10 mM deoxyglucose or iodoacetic acid (0.1 or 2.5 mM) to inhibit glycolysis, or (3) 2 mM NaCN to inhibit oxidative phosphorylation with or without glucose. In other experiments, the pH sensitive fluorescent indicator SNARF-1 was used to assess the relationship between observed changes in [Ca2+] and pH. Results: While glucose deprivation resulted in a minor increase in [Ca2+], glycolytic inhibition resulted in a larger, slowly developing, sustained increase in [Ca2+]. Endothelial [Ca2+] was not affected by inhibition of oxidative phosphorylation alone, whereas a rapid, sustained, and largely reversible increase (∼102 nM) occurred when NaCN exposure was combined with glucose deprivation. The increase in [Ca2+] during glucose-free NaCN exposure was not altered when calcium influx was prevented by removal of extracellular calcium, but was abolished following depletion of an intracellular calcium store by the endoplasmic reticular Ca2+-ATPase inhibitor thapsigargin. In SNARF-1 loaded monolayers, inhibition of glycolysis with iodoacetic acid decreased intracellular pH by 0.33(SEM 0.10) units whereas inhibition of oxidative phosphorylation in the absence of glucose increased intracellular pH by 0.17(0.05) units. While these divergent pH changes were noted, [Ca2+] increased in both groups. Conclusions: A metabolically sensitive endoplasmic reticular calcium store is rapidly and reversibly released in vascular endothelial cells. Endothelial [Ca2+] is shown to be dependent on glycolytic energy production. In the endothelial cell, brief periods of inhibition of oxidative phosphorylation in the absence of glucose rapidly affect intracellular calcium pools rather than leading to calcium influx due to non-specific cellular damage. Effects on intracellular pH alone cannot account for the changes in [Ca2+].Cardiovascular Research 1994;28:1433-1439.

AB - Objective: The aim was to examine the relationship between cellular metabolism and intracellular [Ca2+] in vascular endothelial cells, focusing on the timing, mechanism, and reversibility of intracellular [Ca2+] changes resulting from ATP depletion. Methods: Cultured rat aortic endothelial monolayers were loaded with indo-1 and exposed for 30 min to: (1) glucose-free buffer, (2) 10 mM deoxyglucose or iodoacetic acid (0.1 or 2.5 mM) to inhibit glycolysis, or (3) 2 mM NaCN to inhibit oxidative phosphorylation with or without glucose. In other experiments, the pH sensitive fluorescent indicator SNARF-1 was used to assess the relationship between observed changes in [Ca2+] and pH. Results: While glucose deprivation resulted in a minor increase in [Ca2+], glycolytic inhibition resulted in a larger, slowly developing, sustained increase in [Ca2+]. Endothelial [Ca2+] was not affected by inhibition of oxidative phosphorylation alone, whereas a rapid, sustained, and largely reversible increase (∼102 nM) occurred when NaCN exposure was combined with glucose deprivation. The increase in [Ca2+] during glucose-free NaCN exposure was not altered when calcium influx was prevented by removal of extracellular calcium, but was abolished following depletion of an intracellular calcium store by the endoplasmic reticular Ca2+-ATPase inhibitor thapsigargin. In SNARF-1 loaded monolayers, inhibition of glycolysis with iodoacetic acid decreased intracellular pH by 0.33(SEM 0.10) units whereas inhibition of oxidative phosphorylation in the absence of glucose increased intracellular pH by 0.17(0.05) units. While these divergent pH changes were noted, [Ca2+] increased in both groups. Conclusions: A metabolically sensitive endoplasmic reticular calcium store is rapidly and reversibly released in vascular endothelial cells. Endothelial [Ca2+] is shown to be dependent on glycolytic energy production. In the endothelial cell, brief periods of inhibition of oxidative phosphorylation in the absence of glucose rapidly affect intracellular calcium pools rather than leading to calcium influx due to non-specific cellular damage. Effects on intracellular pH alone cannot account for the changes in [Ca2+].Cardiovascular Research 1994;28:1433-1439.

KW - Calcium

KW - Cyanide

KW - Endothelium

KW - Metabolism

KW - PH

UR - http://www.scopus.com/inward/record.url?scp=85047678688&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047678688&partnerID=8YFLogxK

U2 - 10.1093/cvr/28.9.1433

DO - 10.1093/cvr/28.9.1433

M3 - Article

C2 - 7954656

AN - SCOPUS:85047678688

VL - 28

SP - 1433

EP - 1439

JO - Cardiovascular Research

JF - Cardiovascular Research

SN - 0008-6363

IS - 9

ER -