In vivo monitoring of function of autologous engineered pulmonary valve

Danielle Gottlieb, Tandon Kunal, Sitaram Emani, Elena Aikawa, David W. Brown, Andrew J. Powell, Arthur Nedder, George C. Engelmayr, Juan M. Melero-Martin, Michael S. Sacks, John E. Mayer

Research output: Contribution to journalArticlepeer-review

100 Scopus citations

Abstract

Objectives: Clinical translation of tissue-engineered heart valves requires valve competency and lack of stenosis in the short and long term. Early studies of engineered valves showed promise, although lacked complete definition of valve function. Building on prior experiments, we sought to define the in vivo changes in structure and function of autologous engineered pulmonary valved conduits. Methods: Mesenchymal stem cells were isolated from neonatal sheep bone marrow and seeded onto a bioresorbable scaffold. After 4 weeks of culture, valved conduits were implanted. Valve function, cusp, and conduit dimensions were evaluated at implantation (echocardiography), at the experimental midpoint (magnetic resonance imaging), and at explant, at 1 day, and 1, 6, 12, or 20 weeks postoperatively (direct measurement, echocardiography). Histologic evaluation was performed. Results: Nineteen animals underwent autologous tissue-engineered valved conduit replacement. At implantation, valved conduit function was excellent; maximum transvalvular pressure gradient by Doppler echocardiography was 17 mm Hg; most valved conduits showed trivial pulmonary regurgitation. At 6 postoperative weeks, valve cusps appeared less mobile; pulmonary regurgitation was mild to moderate. At 12 weeks or more, valved conduit cusps were increasingly attenuated and regurgitant. Valved conduit diameter remained unchanged over 20 weeks. Dimensional measurements by magnetic resonance imaging correlated with direct measurement at explant. Conclusions: We demonstrate autologous engineered tissue valved conduits that function well at implantation, with subsequent monitoring of dimensions and function in real time by magnetic resonance imaging. In vivo valves undergo structural and functional remodeling without stenosis, but with worsening pulmonary regurgitation after 6 weeks. Insights into mechanisms of in vivo remodeling are valuable for future iterations of engineered heart valves.

Original languageEnglish (US)
Pages (from-to)723-731
Number of pages9
JournalJournal of Thoracic and Cardiovascular Surgery
Volume139
Issue number3
DOIs
StatePublished - Mar 2010
Externally publishedYes

ASJC Scopus subject areas

  • Surgery
  • Pulmonary and Respiratory Medicine
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'In vivo monitoring of function of autologous engineered pulmonary valve'. Together they form a unique fingerprint.

Cite this