In vivo biodistribution and accumulation of 89Zr in mice

Diane Abou, Thomas Ku, Peter M. Smith-Jones

Research output: Contribution to journalArticle

Abstract

Introduction: The present investigation focuses on the chemical and biological fate of 89Zr in mice. Electrophoreses of 89Zr solvated or chelated in different conditions are here presented. The biological fate of mice injected with [89Zr]Zr-oxalate, [89Zr]Zr-chloride, [89Zr]Zr-phosphate, [89Zr]Zr-desferrioxamine and [89Zr]Zr-citrate is studied with the biodistribution, the clearances and positron emission tomography images. A special focus is also given regarding the quality of 89Zr bone accumulation. Methods: Electrophoreses were carried out on chromatography paper and read by gamma counting. Then, the solutions were intravenously injected in mice, imaged at different time points and sacrificed. The bones, the epiphysis and the marrow substance were separated and evaluated with gamma counts. Results: The clearances of [89Zr]Zr-chloride and [89Zr]Zr-oxalate reached 20% of injected dose (ID) after 6 days whereas [89Zr]Zr-phosphate was only 5% of ID. [89Zr]Zr-citrate and [89Zr]Zr-DFO were noticeably excreted after the first day postinjection (p.i.). [89Zr]Zr-chloride and [89Zr]Zr-oxalate resulted in a respective bone uptake of ~15% ID/g and~20% ID/g at 8 h p.i. with minor losses after 6 days. [89Zr]Zr-citrate bone uptake was also observed, but [89Zr]Zr-phosphate was absorbed in high amounts in the liver and the spleen. The marrow cells were insignificantly radioactive in comparison to the calcified tissues. Conclusion: Despite the complexity of Zr coordination, the electrophoretic analyses provided detailed evidences of Zr charges either as salts or as complexes. This study also shows that weakly chelated, 89Zr is a bone seeker and has a strong affinity for phosphate.

Original languageEnglish (US)
Pages (from-to)675-681
Number of pages7
JournalNuclear Medicine and Biology
Volume38
Issue number5
DOIs
StatePublished - Jul 2011
Externally publishedYes

Fingerprint

Oxalates
Phosphates
Citric Acid
Chlorides
Bone and Bones
Bone Marrow
Paper Chromatography
Epiphyses
Deferoxamine
Positron-Emission Tomography
Spleen
Salts
Liver

Keywords

  • Zr
  • Bone seeker
  • Chloride
  • Oxalate
  • PET
  • Phosphate

ASJC Scopus subject areas

  • Cancer Research
  • Molecular Medicine
  • Radiology Nuclear Medicine and imaging

Cite this

In vivo biodistribution and accumulation of 89Zr in mice. / Abou, Diane; Ku, Thomas; Smith-Jones, Peter M.

In: Nuclear Medicine and Biology, Vol. 38, No. 5, 07.2011, p. 675-681.

Research output: Contribution to journalArticle

Abou, Diane ; Ku, Thomas ; Smith-Jones, Peter M. / In vivo biodistribution and accumulation of 89Zr in mice. In: Nuclear Medicine and Biology. 2011 ; Vol. 38, No. 5. pp. 675-681.
@article{9140a791745f4cbc89a158509c559f0b,
title = "In vivo biodistribution and accumulation of 89Zr in mice",
abstract = "Introduction: The present investigation focuses on the chemical and biological fate of 89Zr in mice. Electrophoreses of 89Zr solvated or chelated in different conditions are here presented. The biological fate of mice injected with [89Zr]Zr-oxalate, [89Zr]Zr-chloride, [89Zr]Zr-phosphate, [89Zr]Zr-desferrioxamine and [89Zr]Zr-citrate is studied with the biodistribution, the clearances and positron emission tomography images. A special focus is also given regarding the quality of 89Zr bone accumulation. Methods: Electrophoreses were carried out on chromatography paper and read by gamma counting. Then, the solutions were intravenously injected in mice, imaged at different time points and sacrificed. The bones, the epiphysis and the marrow substance were separated and evaluated with gamma counts. Results: The clearances of [89Zr]Zr-chloride and [89Zr]Zr-oxalate reached 20{\%} of injected dose (ID) after 6 days whereas [89Zr]Zr-phosphate was only 5{\%} of ID. [89Zr]Zr-citrate and [89Zr]Zr-DFO were noticeably excreted after the first day postinjection (p.i.). [89Zr]Zr-chloride and [89Zr]Zr-oxalate resulted in a respective bone uptake of ~15{\%} ID/g and~20{\%} ID/g at 8 h p.i. with minor losses after 6 days. [89Zr]Zr-citrate bone uptake was also observed, but [89Zr]Zr-phosphate was absorbed in high amounts in the liver and the spleen. The marrow cells were insignificantly radioactive in comparison to the calcified tissues. Conclusion: Despite the complexity of Zr coordination, the electrophoretic analyses provided detailed evidences of Zr charges either as salts or as complexes. This study also shows that weakly chelated, 89Zr is a bone seeker and has a strong affinity for phosphate.",
keywords = "Zr, Bone seeker, Chloride, Oxalate, PET, Phosphate",
author = "Diane Abou and Thomas Ku and Smith-Jones, {Peter M.}",
year = "2011",
month = "7",
doi = "10.1016/j.nucmedbio.2010.12.011",
language = "English (US)",
volume = "38",
pages = "675--681",
journal = "Nuclear Medicine and Biology",
issn = "0969-8051",
publisher = "Elsevier Inc.",
number = "5",

}

TY - JOUR

T1 - In vivo biodistribution and accumulation of 89Zr in mice

AU - Abou, Diane

AU - Ku, Thomas

AU - Smith-Jones, Peter M.

PY - 2011/7

Y1 - 2011/7

N2 - Introduction: The present investigation focuses on the chemical and biological fate of 89Zr in mice. Electrophoreses of 89Zr solvated or chelated in different conditions are here presented. The biological fate of mice injected with [89Zr]Zr-oxalate, [89Zr]Zr-chloride, [89Zr]Zr-phosphate, [89Zr]Zr-desferrioxamine and [89Zr]Zr-citrate is studied with the biodistribution, the clearances and positron emission tomography images. A special focus is also given regarding the quality of 89Zr bone accumulation. Methods: Electrophoreses were carried out on chromatography paper and read by gamma counting. Then, the solutions were intravenously injected in mice, imaged at different time points and sacrificed. The bones, the epiphysis and the marrow substance were separated and evaluated with gamma counts. Results: The clearances of [89Zr]Zr-chloride and [89Zr]Zr-oxalate reached 20% of injected dose (ID) after 6 days whereas [89Zr]Zr-phosphate was only 5% of ID. [89Zr]Zr-citrate and [89Zr]Zr-DFO were noticeably excreted after the first day postinjection (p.i.). [89Zr]Zr-chloride and [89Zr]Zr-oxalate resulted in a respective bone uptake of ~15% ID/g and~20% ID/g at 8 h p.i. with minor losses after 6 days. [89Zr]Zr-citrate bone uptake was also observed, but [89Zr]Zr-phosphate was absorbed in high amounts in the liver and the spleen. The marrow cells were insignificantly radioactive in comparison to the calcified tissues. Conclusion: Despite the complexity of Zr coordination, the electrophoretic analyses provided detailed evidences of Zr charges either as salts or as complexes. This study also shows that weakly chelated, 89Zr is a bone seeker and has a strong affinity for phosphate.

AB - Introduction: The present investigation focuses on the chemical and biological fate of 89Zr in mice. Electrophoreses of 89Zr solvated or chelated in different conditions are here presented. The biological fate of mice injected with [89Zr]Zr-oxalate, [89Zr]Zr-chloride, [89Zr]Zr-phosphate, [89Zr]Zr-desferrioxamine and [89Zr]Zr-citrate is studied with the biodistribution, the clearances and positron emission tomography images. A special focus is also given regarding the quality of 89Zr bone accumulation. Methods: Electrophoreses were carried out on chromatography paper and read by gamma counting. Then, the solutions were intravenously injected in mice, imaged at different time points and sacrificed. The bones, the epiphysis and the marrow substance were separated and evaluated with gamma counts. Results: The clearances of [89Zr]Zr-chloride and [89Zr]Zr-oxalate reached 20% of injected dose (ID) after 6 days whereas [89Zr]Zr-phosphate was only 5% of ID. [89Zr]Zr-citrate and [89Zr]Zr-DFO were noticeably excreted after the first day postinjection (p.i.). [89Zr]Zr-chloride and [89Zr]Zr-oxalate resulted in a respective bone uptake of ~15% ID/g and~20% ID/g at 8 h p.i. with minor losses after 6 days. [89Zr]Zr-citrate bone uptake was also observed, but [89Zr]Zr-phosphate was absorbed in high amounts in the liver and the spleen. The marrow cells were insignificantly radioactive in comparison to the calcified tissues. Conclusion: Despite the complexity of Zr coordination, the electrophoretic analyses provided detailed evidences of Zr charges either as salts or as complexes. This study also shows that weakly chelated, 89Zr is a bone seeker and has a strong affinity for phosphate.

KW - Zr

KW - Bone seeker

KW - Chloride

KW - Oxalate

KW - PET

KW - Phosphate

UR - http://www.scopus.com/inward/record.url?scp=79959667363&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79959667363&partnerID=8YFLogxK

U2 - 10.1016/j.nucmedbio.2010.12.011

DO - 10.1016/j.nucmedbio.2010.12.011

M3 - Article

VL - 38

SP - 675

EP - 681

JO - Nuclear Medicine and Biology

JF - Nuclear Medicine and Biology

SN - 0969-8051

IS - 5

ER -