In vitro inhibition of human glioblastoma cell line invasiveness by antisense uPA receptor

Sanjeeva Mohanam, Shravan K. Chintala, Yoshinori Go, Anuradha Bhattacharya, Boyapati Venkaiah, Douglas Boyd, Ziya L. Gokaslan, Raymond Sawaya, Jasti S. Rao

Research output: Contribution to journalArticlepeer-review

102 Scopus citations


The cell surface urokinase-type plasminogen activator receptor (uPAR) has been shown to be a key molecule in regulating plasminogen-mediated extracellular proteolysis. To investigate the role of uPAR in invasion of brain tumors, human glioblastoma cell line SNB19 was stably transfected with a vector capable of expressing an antisense transcript complementary to the 300 base pair of the 5' end of the uPAR mRNA. Parental and stably transfected (vector, sense, and antisense) cell lines were analysed for uPAR mRNA transcript by Northern blot analysis, and receptor protein levels were measured by radioreceptor assays and Western blotting. Significant reduction of uPAR sites was observed in the antisense transfected cell lines. The levels of uPAR mRNA were significantly decreased in antisense clones compared to control, vector and sense clones. The invasive potential of the cell lines in vitro was measured by Matrigel invasion assay and migration of cells from spheroids to monolayers. The antisense transfected cells showed a markedly lower level of invasion and migration than the controls. The antisense clones were more adhesive to the ECM components compared to parental, vector and sense clones. All transfected (vector, sense and antisense) clones and parental cells produced similar levels of uPA activity without any significant difference however, MMP-2 activity was decreased in antisense clones compared to controls. These results demonstrate that uPAR expression is critical for the invasiveness of human gliomas and down regulation of uPAR expression may be a feasible approach to decrease invasiveness.

Original languageEnglish (US)
Pages (from-to)1351-1359
Number of pages9
Issue number11
StatePublished - 1997
Externally publishedYes


  • Glioblastoma
  • Invasiveness
  • Plasminogen activators
  • Receptors

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cancer Research


Dive into the research topics of 'In vitro inhibition of human glioblastoma cell line invasiveness by antisense uPA receptor'. Together they form a unique fingerprint.

Cite this