In vitro evaluation of cerebrospinal fluid velocity measurement in type I Chiari malformation: repeatability, reproducibility, and agreement using 2D phase contrast and 4D flow MRI

Gwendolyn Williams, Suraj Thyagaraj, Audrey Fu, John Oshinski, Daniel Giese, Alexander C. Bunck, Eleonora Fornari, Francesco Santini, Mark Luciano, Francis Loth, Bryn A. Martin

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Phase contrast magnetic resonance imaging, PC MRI, is a valuable tool allowing for non-invasive quantification of CSF dynamics, but has lacked adoption in clinical practice for Chiari malformation diagnostics. To improve these diagnostic practices, a better understanding of PC MRI based measurement agreement, repeatability, and reproducibility of CSF dynamics is needed. Methods: An anatomically realistic in vitro subject specific model of a Chiari malformation patient was scanned three times at five different scanning centers using 2D PC MRI and 4D Flow techniques to quantify intra-scanner repeatability, inter-scanner reproducibility, and agreement between imaging modalities. Peak systolic CSF velocities were measured at nine axial planes using 2D PC MRI, which were then compared to 4D Flow peak systolic velocity measurements extracted at those exact axial positions along the model. Results: Comparison of measurement results showed good overall agreement of CSF velocity detection between 2D PC MRI and 4D Flow (p = 0.86), fair intra-scanner repeatability (confidence intervals ± 1.5 cm/s), and poor inter-scanner reproducibility. On average, 4D Flow measurements had a larger variability than 2D PC MRI measurements (standard deviations 1.83 and 1.04 cm/s, respectively). Conclusion: Agreement, repeatability, and reproducibility of 2D PC MRI and 4D Flow detection of peak CSF velocities was quantified using a patient-specific in vitro model of Chiari malformation. In combination, the greatest factor leading to measurement inconsistency was determined to be a lack of reproducibility between different MRI centers. Overall, these findings may help lead to better understanding for application of 2D PC MRI and 4D Flow techniques as diagnostic tools for CSF dynamics quantification in Chiari malformation and related diseases.

Original languageEnglish (US)
Article number12
JournalFluids and barriers of the CNS
Volume18
Issue number1
DOIs
StatePublished - Dec 2021

Keywords

  • Cerebrospinal fluid
  • Chiari malformation
  • Magnetic resonance imaging
  • Phase contrast
  • Spinal cord

ASJC Scopus subject areas

  • Neurology
  • Developmental Neuroscience
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'In vitro evaluation of cerebrospinal fluid velocity measurement in type I Chiari malformation: repeatability, reproducibility, and agreement using 2D phase contrast and 4D flow MRI'. Together they form a unique fingerprint.

Cite this