In vitro and in vivo clinical pharmacology of dimethyl benzoylphenylurea, a novel oral tubulin-interactive agent

Michelle A. Rudek, Ming Zhao, Nicola F. Smith, Robert W. Robey, Ping He, Gurulingappa Hallur, Saeed Khan, Manuel Hidalgo, Antonio Jimeno, A. Dimitrios Colevas, Wells A. Messersmith, Antonio C. Wolff, Sharyn D. Baker

Research output: Contribution to journalArticlepeer-review

Abstract

Dimethyl benzoylphenylurea (BPU) is a novel tubulin-interactive agent with poor and highly variable oral bioavailability. In a phase I clinical trial of BPU, higher plasma exposure to BPU and metabolites was observed in patients who experienced dose-limiting toxicity. The elucidation of the clinical pharmacology of BPU was sought. BPU, monomethyl BPU, and aminoBPU were metabolized by human liver microsomes. Studies with cDNA-expressed human cytochrome P450 enzymes revealed that BPU was metabolized predominantly by CYP3A4 and CYP1A1 but was also a substrate for CYP2C8, CYP2D6, CYP3A5, and CYP3A7. BPU was not a substrate for the efflux transporter ABCG2. Using simultaneous high-performance liquid chromatography/diode array and tandem mass spectrometry detection, we identified six metabolites in human liver microsomes, plasma, or urine: monomethylBPU, aminoBPU, G280, G308, G322, and G373. In patient urine, aminoBPU, G280, G308, and G322 collectively represented <2% of the given BPU dose. G280, G308, G322, and G373 showed minimal cytotoxicity. When BPU was given p.o. to mice in the presence and absence of the CYP3A and ABCG2 inhibitor, ritonavir, there was an increase in BPU plasma exposure and decrease in metabolite exposure but no overall change in cumulative exposure to BPU and the cytotoxic metabolites. Thus, we conclude that (a) CYP3A4 and CYP1A1 are the predominant cytochrome P450 enzymes that catalyze BPU metabolism, (b) BPU is metabolized to two cytotoxic and four noncytotoxic metabolites, and (c) ritonavir inhibits BPU metabolism to improve the systemic exposure to BPU without altering cumulative exposure to BPU and the cytotoxic metabolites.

Original languageEnglish (US)
Pages (from-to)8503-8511
Number of pages9
JournalClinical Cancer Research
Volume11
Issue number23
DOIs
StatePublished - Dec 1 2005

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'In vitro and in vivo clinical pharmacology of dimethyl benzoylphenylurea, a novel oral tubulin-interactive agent'. Together they form a unique fingerprint.

Cite this