In situ observation of protein phosphorylation by high-resolution NMR spectroscopy

Philipp Selenko, Dominique P. Frueh, Simon J. Elsaesser, Wilhelm Haas, Steven P. Gygi, Gerhard Wagner

Research output: Contribution to journalArticlepeer-review

120 Scopus citations

Abstract

Although the biological significance of protein phosphorylation in cellular signaling is widely appreciated, methods to directly detect these post-translational modifications in situ are lacking. Here we introduce the application of high-resolution NMR spectroscopy for observing de novo protein phosphorylation in vitro and in Xenopus laevis egg extracts and whole live oocyte cells. We found that the stepwise modification of adjacent casein kinase 2 (CK2) substrate sites within the viral SV40 large T antigen regulatory region proceeded in a defined order and through intermediate substrate release. This kinase mechanism contrasts with a more intuitive mode of CK2 action in which the kinase would remain substrate bound to perform both modification reactions without intermediate substrate release. For cellular signaling pathways, the transient availability of partially modified CK2 substrates could exert important switch-like regulatory functions.

Original languageEnglish (US)
Pages (from-to)321-329
Number of pages9
JournalNature Structural and Molecular Biology
Volume15
Issue number3
DOIs
StatePublished - Mar 2008
Externally publishedYes

ASJC Scopus subject areas

  • Structural Biology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'In situ observation of protein phosphorylation by high-resolution NMR spectroscopy'. Together they form a unique fingerprint.

Cite this