Impairments of the medial olivocochlear system increase the risk of noise-induced auditory neuropathy in laboratory mice

Research output: Contribution to journalArticle

Abstract

Hypothesis: Impairments of the medial olivocochlear system (MOCS) increase the risk of environmentally induced auditory neuropathy spectrum disorder (ANSD). Background: ANSD is a problem in the neural transmission of auditory information that accounts for 10% to 15% of the cases of pediatric hearing loss. The underlying mechanisms of the disorder remain poorly understood, but noise exposure is an important risk factor. The goal of this study was to identify environmental conditions and genetic predispositions that lead to ANSD. Our approach was based on the assumption that noise induces ANSD by impeding the functional maturation of the brain's sound coding pathways. Because the MOCS adjusts the sensitivity of the inner ear to noise, impairments of this feedback are predicted to increase the disruptive effects of environmental exposures. METHODS: An animal model of ANSD was created by rearing mice in noise. MOCS protection was assessed by comparing the incidence of noise-induced ANSD among knockout mice lacking feedback and wild-type (WT) controls. The mice were screened for ANSD with distortion product otoacoustic emissions, auditory brainstem responses, and behavioral measures of gap detection. Single-unit recording procedures were used to link these deficits to impaired synaptic transmission in the ventral cochlear nucleus. Results: ANSD manifested in noise-reared mice as intact distortion product otoacoustic emissions, abnormal auditory brainstem responses, and impaired gap detection. The phenotype was not observed among quiet-reared WT mice but was occasionally noted among noise-reared WT mice. The incidence of ANSD significantly increased among knockout mice, especially when they were reared in noise. Conclusion: Noise promotes ANSD by altering the functional maturation of the brain's temporal pathways. Noise-induced impairments are reduced by the sound-attenuating effects of the MOCS. Noise levels do not need to be unnaturally loud to constitute significant risk in MOCS-compromised individuals.

Original languageEnglish (US)
Pages (from-to)1568-1578
Number of pages11
JournalOtology and Neurotology
Volume32
Issue number9
DOIs
StatePublished - Dec 2011

Fingerprint

Noise
Brain Stem Auditory Evoked Potentials
Knockout Mice
Synaptic Transmission
Auditory neuropathy
Cochlear Nucleus
Incidence
Environmental Exposure
Brain
Inner Ear
Genetic Predisposition to Disease
Hearing Loss
Animal Models
Pediatrics
Phenotype

ASJC Scopus subject areas

  • Otorhinolaryngology
  • Clinical Neurology
  • Sensory Systems
  • Medicine(all)

Cite this

@article{5cae0681896f4bcd9802e88d54ab9faa,
title = "Impairments of the medial olivocochlear system increase the risk of noise-induced auditory neuropathy in laboratory mice",
abstract = "Hypothesis: Impairments of the medial olivocochlear system (MOCS) increase the risk of environmentally induced auditory neuropathy spectrum disorder (ANSD). Background: ANSD is a problem in the neural transmission of auditory information that accounts for 10{\%} to 15{\%} of the cases of pediatric hearing loss. The underlying mechanisms of the disorder remain poorly understood, but noise exposure is an important risk factor. The goal of this study was to identify environmental conditions and genetic predispositions that lead to ANSD. Our approach was based on the assumption that noise induces ANSD by impeding the functional maturation of the brain's sound coding pathways. Because the MOCS adjusts the sensitivity of the inner ear to noise, impairments of this feedback are predicted to increase the disruptive effects of environmental exposures. METHODS: An animal model of ANSD was created by rearing mice in noise. MOCS protection was assessed by comparing the incidence of noise-induced ANSD among knockout mice lacking feedback and wild-type (WT) controls. The mice were screened for ANSD with distortion product otoacoustic emissions, auditory brainstem responses, and behavioral measures of gap detection. Single-unit recording procedures were used to link these deficits to impaired synaptic transmission in the ventral cochlear nucleus. Results: ANSD manifested in noise-reared mice as intact distortion product otoacoustic emissions, abnormal auditory brainstem responses, and impaired gap detection. The phenotype was not observed among quiet-reared WT mice but was occasionally noted among noise-reared WT mice. The incidence of ANSD significantly increased among knockout mice, especially when they were reared in noise. Conclusion: Noise promotes ANSD by altering the functional maturation of the brain's temporal pathways. Noise-induced impairments are reduced by the sound-attenuating effects of the MOCS. Noise levels do not need to be unnaturally loud to constitute significant risk in MOCS-compromised individuals.",
author = "May, {Bradford Jay} and Lauer, {Amanda M} and Roos, {Matthew J.}",
year = "2011",
month = "12",
doi = "10.1097/MAO.0b013e31823389a1",
language = "English (US)",
volume = "32",
pages = "1568--1578",
journal = "Otology and Neurotology",
issn = "1531-7129",
publisher = "Lippincott Williams and Wilkins",
number = "9",

}

TY - JOUR

T1 - Impairments of the medial olivocochlear system increase the risk of noise-induced auditory neuropathy in laboratory mice

AU - May, Bradford Jay

AU - Lauer, Amanda M

AU - Roos, Matthew J.

PY - 2011/12

Y1 - 2011/12

N2 - Hypothesis: Impairments of the medial olivocochlear system (MOCS) increase the risk of environmentally induced auditory neuropathy spectrum disorder (ANSD). Background: ANSD is a problem in the neural transmission of auditory information that accounts for 10% to 15% of the cases of pediatric hearing loss. The underlying mechanisms of the disorder remain poorly understood, but noise exposure is an important risk factor. The goal of this study was to identify environmental conditions and genetic predispositions that lead to ANSD. Our approach was based on the assumption that noise induces ANSD by impeding the functional maturation of the brain's sound coding pathways. Because the MOCS adjusts the sensitivity of the inner ear to noise, impairments of this feedback are predicted to increase the disruptive effects of environmental exposures. METHODS: An animal model of ANSD was created by rearing mice in noise. MOCS protection was assessed by comparing the incidence of noise-induced ANSD among knockout mice lacking feedback and wild-type (WT) controls. The mice were screened for ANSD with distortion product otoacoustic emissions, auditory brainstem responses, and behavioral measures of gap detection. Single-unit recording procedures were used to link these deficits to impaired synaptic transmission in the ventral cochlear nucleus. Results: ANSD manifested in noise-reared mice as intact distortion product otoacoustic emissions, abnormal auditory brainstem responses, and impaired gap detection. The phenotype was not observed among quiet-reared WT mice but was occasionally noted among noise-reared WT mice. The incidence of ANSD significantly increased among knockout mice, especially when they were reared in noise. Conclusion: Noise promotes ANSD by altering the functional maturation of the brain's temporal pathways. Noise-induced impairments are reduced by the sound-attenuating effects of the MOCS. Noise levels do not need to be unnaturally loud to constitute significant risk in MOCS-compromised individuals.

AB - Hypothesis: Impairments of the medial olivocochlear system (MOCS) increase the risk of environmentally induced auditory neuropathy spectrum disorder (ANSD). Background: ANSD is a problem in the neural transmission of auditory information that accounts for 10% to 15% of the cases of pediatric hearing loss. The underlying mechanisms of the disorder remain poorly understood, but noise exposure is an important risk factor. The goal of this study was to identify environmental conditions and genetic predispositions that lead to ANSD. Our approach was based on the assumption that noise induces ANSD by impeding the functional maturation of the brain's sound coding pathways. Because the MOCS adjusts the sensitivity of the inner ear to noise, impairments of this feedback are predicted to increase the disruptive effects of environmental exposures. METHODS: An animal model of ANSD was created by rearing mice in noise. MOCS protection was assessed by comparing the incidence of noise-induced ANSD among knockout mice lacking feedback and wild-type (WT) controls. The mice were screened for ANSD with distortion product otoacoustic emissions, auditory brainstem responses, and behavioral measures of gap detection. Single-unit recording procedures were used to link these deficits to impaired synaptic transmission in the ventral cochlear nucleus. Results: ANSD manifested in noise-reared mice as intact distortion product otoacoustic emissions, abnormal auditory brainstem responses, and impaired gap detection. The phenotype was not observed among quiet-reared WT mice but was occasionally noted among noise-reared WT mice. The incidence of ANSD significantly increased among knockout mice, especially when they were reared in noise. Conclusion: Noise promotes ANSD by altering the functional maturation of the brain's temporal pathways. Noise-induced impairments are reduced by the sound-attenuating effects of the MOCS. Noise levels do not need to be unnaturally loud to constitute significant risk in MOCS-compromised individuals.

UR - http://www.scopus.com/inward/record.url?scp=81855163402&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=81855163402&partnerID=8YFLogxK

U2 - 10.1097/MAO.0b013e31823389a1

DO - 10.1097/MAO.0b013e31823389a1

M3 - Article

VL - 32

SP - 1568

EP - 1578

JO - Otology and Neurotology

JF - Otology and Neurotology

SN - 1531-7129

IS - 9

ER -