Impaired mitochondrial network excitability in failing Guinea-pig cardiomyocytes

Kah Yong Goh, Jing Qu, Huixian Hong, Ting Liu, Louis J. Dell'italia, Yong Wu, Brian O'rourke, Lufang Zhou

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Aims Studies in Guinea-pig cardiomyocytes show that reactive oxygen species (ROS) produced by a few mitochondria can propagate to their neighbours, triggering synchronized, cell-wide network oscillations via an ROS-induced ROS release (RIRR) mechanism. How mitochondria in cardiomyocytes from failing hearts (HF) respond to local oxidative stress perturbations has not been investigated. Since mitochondrial ultrastructure is reportedly disrupted in HF, and propagation of ROS signals depends on mitochondrial network integrity, we hypothesized that the laser flash-induced RIRR is altered in HF. Methods and results To test the hypothesis, pressure-overload HF was induced in Guinea pigs by ascending aortic constriction leading to left ventricular dilatation and decreased ejection fraction after 8 weeks. Isolated cardiomyocytes were studied with two-photon/confocal microscopy to determine their basal oxidative stress and propensity to undergo mitochondrial depolarization/oscillations in response to local laser flash stimulations. The expression of mitofusin proteins and mitochondrial network structure were also analysed. Results showed that HF cardiomyocytes had higher baseline ROS levels and less reduced glutathione, and were more prone to laser flash-induced mitochondrial depolarization. In contrast, the delay between the laser flash and synchronized cell-wide network oscillations was prolonged in HF myocytes compared with shams, and the spatial extent of coupling was diminished, suggesting dampened RIRR and ROS signal propagation. In addition, the expressions of mitofusin proteins in HF myocardium were down-regulated compared with these from sham-operated animals, and the mitochondrial network structure altered. Conclusion The disrupted inter-mitochondrial tethering and loss of structural organization may underlie decreased ROS-dependent mitochondrial coupling in HF.

Original languageEnglish (US)
Pages (from-to)79-89
Number of pages11
JournalCardiovascular research
Volume109
Issue number1
DOIs
StatePublished - Jan 1 2016

Keywords

  • Excitability
  • Heart failure
  • Mitochondrial network
  • Mitofusin protein
  • ROS-induced-ROS release

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Impaired mitochondrial network excitability in failing Guinea-pig cardiomyocytes'. Together they form a unique fingerprint.

Cite this