TY - JOUR
T1 - Immunological detection of pyrazine-2- carboxylic acid for the detection of pyrazinamide resistance in Mycobacterium tuberculosis
AU - Florentini, Edgar A.
AU - Angulo, Noelia
AU - Gilman, Robert H.
AU - Alcántara, Roberto
AU - Roncal, Elisa
AU - Antiparra, Ricardo
AU - Toscano, Emily
AU - Vallejos, Katherine
AU - Kirwan, Danni
AU - Zimic, Mirko
AU - Sheen, Patricia
N1 - Publisher Copyright:
© 2020 Florentini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/11
Y1 - 2020/11
N2 - Pyrazinamide (PZA) susceptibility testing in Mycobacterium tuberculosis (Mtb) is a current area of development and PZA-resistant strains are increasingly prevalent. Previous studies have demonstrated that the detection of pyrazinoic acid (POA), the metabolite produced by the deamidation of PZA, is a good predictor for PZA resistance since a resistant strain would not convert PZA into POA at a critical required rate, whereas a susceptible strain will do, expelling POA to the extracellular environment at a certain rate, and allowing for quantification of this accumulated analyte. In order to quantify POA, an indirect competitive ELISA (icELISA) test using hyperimmune polyclonal rabbit serum against POA was developed: For this purpose, pure POA was first covalently linked to the highly immunogenic Keyhole Limpet Hemocyanine, and inoculated in rabbits. A construct made of bovine serum albumin (BSA) linked to pure POA and fixed at the bottom of wells was used as a competitor against spiked samples and liquid Mtb culture supernatants. When spiked samples (commercial POA alone) were analyzed, the half maximal inhibitory concentration (IC50) was 1.16 mg/ mL, the limit of detection 200 μg/mL and the assay was specific (it did not detect PZA, IC50 > 20 mg/mL). However, culture supernatants (7H9-OADC-PANTA medium) disrupted the competition and a proper icELISA curve was not obtainable. We consider that, although we have shown that it is feasible to induce antibodies against POA, matrix effects could damage its analytical usefulness; multiple, upcoming ways to solve this obstacle are suggested.
AB - Pyrazinamide (PZA) susceptibility testing in Mycobacterium tuberculosis (Mtb) is a current area of development and PZA-resistant strains are increasingly prevalent. Previous studies have demonstrated that the detection of pyrazinoic acid (POA), the metabolite produced by the deamidation of PZA, is a good predictor for PZA resistance since a resistant strain would not convert PZA into POA at a critical required rate, whereas a susceptible strain will do, expelling POA to the extracellular environment at a certain rate, and allowing for quantification of this accumulated analyte. In order to quantify POA, an indirect competitive ELISA (icELISA) test using hyperimmune polyclonal rabbit serum against POA was developed: For this purpose, pure POA was first covalently linked to the highly immunogenic Keyhole Limpet Hemocyanine, and inoculated in rabbits. A construct made of bovine serum albumin (BSA) linked to pure POA and fixed at the bottom of wells was used as a competitor against spiked samples and liquid Mtb culture supernatants. When spiked samples (commercial POA alone) were analyzed, the half maximal inhibitory concentration (IC50) was 1.16 mg/ mL, the limit of detection 200 μg/mL and the assay was specific (it did not detect PZA, IC50 > 20 mg/mL). However, culture supernatants (7H9-OADC-PANTA medium) disrupted the competition and a proper icELISA curve was not obtainable. We consider that, although we have shown that it is feasible to induce antibodies against POA, matrix effects could damage its analytical usefulness; multiple, upcoming ways to solve this obstacle are suggested.
UR - http://www.scopus.com/inward/record.url?scp=85095735804&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095735804&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0241600
DO - 10.1371/journal.pone.0241600
M3 - Article
C2 - 33151985
AN - SCOPUS:85095735804
SN - 1932-6203
VL - 15
JO - PLoS One
JF - PLoS One
IS - 11 November
M1 - e0241600
ER -