Immature endothelial cells initiate endothelin-mediated constriction of newborn arteries

Fumin Chang, Sheila Flavahan, Nicholas Flavahan

Research output: Contribution to journalArticle

Abstract

Endothelial expression and the release of endothelin-1 (ET-1) in levels sufficient to initiate vasoconstriction is considered to be a hallmark feature of pathological endothelial dysfunction. During the immediate postnatal period, arterial endothelial cells undergo remarkable structural and functional changes as they transition to a mature protective cell layer, which includes a marked increase in NO dilator activity. The present study demonstrates that endothelial cells lining newborn central arteries express high levels of ET-1 peptides and, in response to endothelial stimulation, rapidly release ET-1 and initiate powerful ET-1-mediated constriction. This activity is lost as the endothelium matures in the postnatal period. Heightened activity of ET-1 in the neonatal endothelium might contribute to inappropriate responses of immature arteries to stress or injury. Indeed, the immature endothelium resembles dysfunctional endothelial cells, and retention or re-emergence of this phenotype may contribute to the development of vascular disease. Endothelial cells lining fetal and newborn arteries have an unusual phenotype, including reduced NO activity, prominent actin stress fibres and poorly developed cellular junctions. Experiments were performed to determine whether the immature endothelium of newborn arteries also expresses and releases endothelin-1 (ET-1) and initiates endothelium-dependent constriction. Carotid arteries were isolated from newborn (postnatal day 1; P1), postnatal day 7 (P7) and postnatal day 21 (P21) mice and assessed in a pressure myograph system. Endothelial stimulation with A23187 or thrombin caused constriction in P1 arteries, no significant change in diameter of P7 arteries, and dilatation in P21 arteries. In P1 arteries, constriction to thrombin or A23187 was inhibited by endothelial-denudation, by ET-1 receptor antagonists (BQ123 plus BQ788) or by inhibition of endothelin-converting enzyme (phosphoramidon or SM19712). ET-1 receptor antagonism did not affect responses to thrombin or A23187 in more mature arteries. Exogenous ET-1 caused similar concentration-dependent constrictions of P1, P7 and P21 arteries. Endothelial stimulation with thrombin rapidly increased the endothelial release of ET-1 from P1 but not P21 aortas. Endothelial expression of ET-1 peptides, as assessed by immunofluorescence analysis, was increased in P1 compared to P21 arteries. Therefore, newborn endothelial cells express high levels of ET-1 peptides, rapidly release ET-1 in response to endothelial stimulation, and initiate ET-1-mediated endothelium-dependent constriction. This activity is diminished as the endothelium matures in the immediate postnatal period. Heightened activity of ET-1 in neonatal endothelium probably reflects an early developmental role of the peptide, although this might contribute to inappropriate responses of immature arteries to stress or injury.

Original languageEnglish (US)
Pages (from-to)4933-4944
Number of pages12
JournalJournal of Physiology
Volume594
Issue number17
DOIs
StatePublished - Sep 1 2016

Fingerprint

Endothelins
Endothelin-1
Constriction
Endothelial Cells
Arteries
Endothelium
Thrombin
Calcimycin
Endothelin A Receptors
Peptides
Phenotype
Stress Fibers
Wounds and Injuries
Vasoconstriction
Vascular Diseases
Carotid Arteries
Fluorescent Antibody Technique
Aorta
Actins
Dilatation

ASJC Scopus subject areas

  • Physiology

Cite this

Immature endothelial cells initiate endothelin-mediated constriction of newborn arteries. / Chang, Fumin; Flavahan, Sheila; Flavahan, Nicholas.

In: Journal of Physiology, Vol. 594, No. 17, 01.09.2016, p. 4933-4944.

Research output: Contribution to journalArticle

@article{74fa649305104ad38001bdfbc0fc46d9,
title = "Immature endothelial cells initiate endothelin-mediated constriction of newborn arteries",
abstract = "Endothelial expression and the release of endothelin-1 (ET-1) in levels sufficient to initiate vasoconstriction is considered to be a hallmark feature of pathological endothelial dysfunction. During the immediate postnatal period, arterial endothelial cells undergo remarkable structural and functional changes as they transition to a mature protective cell layer, which includes a marked increase in NO dilator activity. The present study demonstrates that endothelial cells lining newborn central arteries express high levels of ET-1 peptides and, in response to endothelial stimulation, rapidly release ET-1 and initiate powerful ET-1-mediated constriction. This activity is lost as the endothelium matures in the postnatal period. Heightened activity of ET-1 in the neonatal endothelium might contribute to inappropriate responses of immature arteries to stress or injury. Indeed, the immature endothelium resembles dysfunctional endothelial cells, and retention or re-emergence of this phenotype may contribute to the development of vascular disease. Endothelial cells lining fetal and newborn arteries have an unusual phenotype, including reduced NO activity, prominent actin stress fibres and poorly developed cellular junctions. Experiments were performed to determine whether the immature endothelium of newborn arteries also expresses and releases endothelin-1 (ET-1) and initiates endothelium-dependent constriction. Carotid arteries were isolated from newborn (postnatal day 1; P1), postnatal day 7 (P7) and postnatal day 21 (P21) mice and assessed in a pressure myograph system. Endothelial stimulation with A23187 or thrombin caused constriction in P1 arteries, no significant change in diameter of P7 arteries, and dilatation in P21 arteries. In P1 arteries, constriction to thrombin or A23187 was inhibited by endothelial-denudation, by ET-1 receptor antagonists (BQ123 plus BQ788) or by inhibition of endothelin-converting enzyme (phosphoramidon or SM19712). ET-1 receptor antagonism did not affect responses to thrombin or A23187 in more mature arteries. Exogenous ET-1 caused similar concentration-dependent constrictions of P1, P7 and P21 arteries. Endothelial stimulation with thrombin rapidly increased the endothelial release of ET-1 from P1 but not P21 aortas. Endothelial expression of ET-1 peptides, as assessed by immunofluorescence analysis, was increased in P1 compared to P21 arteries. Therefore, newborn endothelial cells express high levels of ET-1 peptides, rapidly release ET-1 in response to endothelial stimulation, and initiate ET-1-mediated endothelium-dependent constriction. This activity is diminished as the endothelium matures in the immediate postnatal period. Heightened activity of ET-1 in neonatal endothelium probably reflects an early developmental role of the peptide, although this might contribute to inappropriate responses of immature arteries to stress or injury.",
author = "Fumin Chang and Sheila Flavahan and Nicholas Flavahan",
year = "2016",
month = "9",
day = "1",
doi = "10.1113/JP272176",
language = "English (US)",
volume = "594",
pages = "4933--4944",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "17",

}

TY - JOUR

T1 - Immature endothelial cells initiate endothelin-mediated constriction of newborn arteries

AU - Chang, Fumin

AU - Flavahan, Sheila

AU - Flavahan, Nicholas

PY - 2016/9/1

Y1 - 2016/9/1

N2 - Endothelial expression and the release of endothelin-1 (ET-1) in levels sufficient to initiate vasoconstriction is considered to be a hallmark feature of pathological endothelial dysfunction. During the immediate postnatal period, arterial endothelial cells undergo remarkable structural and functional changes as they transition to a mature protective cell layer, which includes a marked increase in NO dilator activity. The present study demonstrates that endothelial cells lining newborn central arteries express high levels of ET-1 peptides and, in response to endothelial stimulation, rapidly release ET-1 and initiate powerful ET-1-mediated constriction. This activity is lost as the endothelium matures in the postnatal period. Heightened activity of ET-1 in the neonatal endothelium might contribute to inappropriate responses of immature arteries to stress or injury. Indeed, the immature endothelium resembles dysfunctional endothelial cells, and retention or re-emergence of this phenotype may contribute to the development of vascular disease. Endothelial cells lining fetal and newborn arteries have an unusual phenotype, including reduced NO activity, prominent actin stress fibres and poorly developed cellular junctions. Experiments were performed to determine whether the immature endothelium of newborn arteries also expresses and releases endothelin-1 (ET-1) and initiates endothelium-dependent constriction. Carotid arteries were isolated from newborn (postnatal day 1; P1), postnatal day 7 (P7) and postnatal day 21 (P21) mice and assessed in a pressure myograph system. Endothelial stimulation with A23187 or thrombin caused constriction in P1 arteries, no significant change in diameter of P7 arteries, and dilatation in P21 arteries. In P1 arteries, constriction to thrombin or A23187 was inhibited by endothelial-denudation, by ET-1 receptor antagonists (BQ123 plus BQ788) or by inhibition of endothelin-converting enzyme (phosphoramidon or SM19712). ET-1 receptor antagonism did not affect responses to thrombin or A23187 in more mature arteries. Exogenous ET-1 caused similar concentration-dependent constrictions of P1, P7 and P21 arteries. Endothelial stimulation with thrombin rapidly increased the endothelial release of ET-1 from P1 but not P21 aortas. Endothelial expression of ET-1 peptides, as assessed by immunofluorescence analysis, was increased in P1 compared to P21 arteries. Therefore, newborn endothelial cells express high levels of ET-1 peptides, rapidly release ET-1 in response to endothelial stimulation, and initiate ET-1-mediated endothelium-dependent constriction. This activity is diminished as the endothelium matures in the immediate postnatal period. Heightened activity of ET-1 in neonatal endothelium probably reflects an early developmental role of the peptide, although this might contribute to inappropriate responses of immature arteries to stress or injury.

AB - Endothelial expression and the release of endothelin-1 (ET-1) in levels sufficient to initiate vasoconstriction is considered to be a hallmark feature of pathological endothelial dysfunction. During the immediate postnatal period, arterial endothelial cells undergo remarkable structural and functional changes as they transition to a mature protective cell layer, which includes a marked increase in NO dilator activity. The present study demonstrates that endothelial cells lining newborn central arteries express high levels of ET-1 peptides and, in response to endothelial stimulation, rapidly release ET-1 and initiate powerful ET-1-mediated constriction. This activity is lost as the endothelium matures in the postnatal period. Heightened activity of ET-1 in the neonatal endothelium might contribute to inappropriate responses of immature arteries to stress or injury. Indeed, the immature endothelium resembles dysfunctional endothelial cells, and retention or re-emergence of this phenotype may contribute to the development of vascular disease. Endothelial cells lining fetal and newborn arteries have an unusual phenotype, including reduced NO activity, prominent actin stress fibres and poorly developed cellular junctions. Experiments were performed to determine whether the immature endothelium of newborn arteries also expresses and releases endothelin-1 (ET-1) and initiates endothelium-dependent constriction. Carotid arteries were isolated from newborn (postnatal day 1; P1), postnatal day 7 (P7) and postnatal day 21 (P21) mice and assessed in a pressure myograph system. Endothelial stimulation with A23187 or thrombin caused constriction in P1 arteries, no significant change in diameter of P7 arteries, and dilatation in P21 arteries. In P1 arteries, constriction to thrombin or A23187 was inhibited by endothelial-denudation, by ET-1 receptor antagonists (BQ123 plus BQ788) or by inhibition of endothelin-converting enzyme (phosphoramidon or SM19712). ET-1 receptor antagonism did not affect responses to thrombin or A23187 in more mature arteries. Exogenous ET-1 caused similar concentration-dependent constrictions of P1, P7 and P21 arteries. Endothelial stimulation with thrombin rapidly increased the endothelial release of ET-1 from P1 but not P21 aortas. Endothelial expression of ET-1 peptides, as assessed by immunofluorescence analysis, was increased in P1 compared to P21 arteries. Therefore, newborn endothelial cells express high levels of ET-1 peptides, rapidly release ET-1 in response to endothelial stimulation, and initiate ET-1-mediated endothelium-dependent constriction. This activity is diminished as the endothelium matures in the immediate postnatal period. Heightened activity of ET-1 in neonatal endothelium probably reflects an early developmental role of the peptide, although this might contribute to inappropriate responses of immature arteries to stress or injury.

UR - http://www.scopus.com/inward/record.url?scp=84986300430&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84986300430&partnerID=8YFLogxK

U2 - 10.1113/JP272176

DO - 10.1113/JP272176

M3 - Article

VL - 594

SP - 4933

EP - 4944

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 17

ER -