IL-4 receptor targeting as an effective immunotherapy against triple-negative breast cancer

Sadiya Parveen, Sumit Siddharth, Laurene S. Cheung, Alok Kumar, John R. Murphy, Dipali Sharma, William R. Bishai

Research output: Contribution to journalArticlepeer-review


In many solid tumors including triple-negative breast cancer (TNBC), IL-4 receptor (IL-4R) upregulation has been shown to promote cancer cell proliferation, apoptotic resistance, metastatic potential and a Th2 response in the tumor microenvironment (TME). Immunosuppressive cells in the TME including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) also express the IL4-R. We hypothesized that selective depletion of IL4-R bearing cells in TNBC may have dual cytotoxic and immunotherapeutic benefit. To selectively target IL-4R+ cells, we genetically constructed, expressed and purified DABIL-4, a fusion protein toxin consisting of the catalytic and translocation domains of diphtheria toxin fused to murine IL-4. We found that DABIL-4 has potent and specific cytotoxic activity against TNBC cells in vitro. In murine TNBC models, DABIL-4 significantly reduced tumor growth, splenomegaly and lung metastases, and this was associated with reductions in MDSC, TAM and regulatory T-cells (Tregs) populations with a concomitant increase in the proportion of IFNγ+ CD8 T-cells. The anti-tumor activity of DABIL-4 was absent in IL-4R KO mice directly implicating IL-4R directed killing as the mechanism of antitumor activity. Moreover, NanoString analysis of DABIL-4 treated TNBC tumors revealed marked decline in mRNA transcripts that promote tumorigenesis and metastasis. Our findings demonstrate that DABIL-4 is a potent targeted antitumor agent which depletes both IL-4R bearing tumor cells as well as immunosuppressive cell populations in the TME.

STATEMENT OF SIGNIFICANCE In solid tumors like breast cancer, Interleukin-4 receptor (IL-4R) expression in the tumor microenvironment aids tumor growth and metastasis. IL-4R expression upon host immune cells further dampens antitumor immunity. In this study, we have genetically constructed a fusion protein toxin, DABIL-4, composed of the catalytic and translocation domains of diphtheria toxin and murine IL-4. DABIL-4 showed specific cytotoxicity against triple-negative breast cancer (TNBC) cells in vitro. DABIL-4 also markedly inhibited TNBC tumor growth and metastasis in vivo. The primary activity of DABIL-4 was found to be depletion of IL-4R+ immune cells in combination with direct elimination of tumor cells. In conclusion, DABIL-4 targeting of both tumor and immunosuppressive host cells is a versatile and effective treatment strategy for TNBC.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Aug 6 2020

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'IL-4 receptor targeting as an effective immunotherapy against triple-negative breast cancer'. Together they form a unique fingerprint.

Cite this