Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia

Julie A. Clennon, Aniset Kamanga, Mulenga Musapa, Clive Julian Shiff, Gregory E. Glass

Research output: Contribution to journalArticle

Abstract

Background: Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures.Methods: A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae.Results: Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM) digital elevation data (DEM) were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM.Conclusions: The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight against malaria in Zambia and other regions with seasonal transmission. This work shows that, in areas of seasonal malaria transmission, incorporating terrain-based landscape models to the planning stages of vector control allows for the exclusion of significant portions of landscape that would be unsuitable for water to accumulate and for mosquito larvae occupation. With increasing free availability of satellite imagery such as SRTM and LandSat, the development of satellite imagery-based prediction models is becoming more accessible to vector management coordinators.

Original languageEnglish (US)
Article number58
JournalInternational Journal of Health Geographics
Volume9
DOIs
StatePublished - Nov 5 2010

Fingerprint

Zambia
Malaria
Breeding
Ecosystem
Remote sensing
Culicidae
Aptitude
Satellite imagery
Satellite Imagery
Topography
Radar
Larva
Water
Radiometers
Drainage
Logistics
Anopheles
Cost Control
Imagery (Psychotherapy)
Availability

ASJC Scopus subject areas

  • Computer Science(all)
  • Business, Management and Accounting(all)
  • Public Health, Environmental and Occupational Health

Cite this

Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia. / Clennon, Julie A.; Kamanga, Aniset; Musapa, Mulenga; Shiff, Clive Julian; Glass, Gregory E.

In: International Journal of Health Geographics, Vol. 9, 58, 05.11.2010.

Research output: Contribution to journalArticle

@article{ed857e285f1a4265a76af9985df5fda5,
title = "Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia",
abstract = "Background: Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures.Methods: A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae.Results: Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19{\%} were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM) digital elevation data (DEM) were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM.Conclusions: The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight against malaria in Zambia and other regions with seasonal transmission. This work shows that, in areas of seasonal malaria transmission, incorporating terrain-based landscape models to the planning stages of vector control allows for the exclusion of significant portions of landscape that would be unsuitable for water to accumulate and for mosquito larvae occupation. With increasing free availability of satellite imagery such as SRTM and LandSat, the development of satellite imagery-based prediction models is becoming more accessible to vector management coordinators.",
author = "Clennon, {Julie A.} and Aniset Kamanga and Mulenga Musapa and Shiff, {Clive Julian} and Glass, {Gregory E.}",
year = "2010",
month = "11",
day = "5",
doi = "10.1186/1476-072X-9-58",
language = "English (US)",
volume = "9",
journal = "International Journal of Health Geographics",
issn = "1476-072X",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia

AU - Clennon, Julie A.

AU - Kamanga, Aniset

AU - Musapa, Mulenga

AU - Shiff, Clive Julian

AU - Glass, Gregory E.

PY - 2010/11/5

Y1 - 2010/11/5

N2 - Background: Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures.Methods: A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae.Results: Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM) digital elevation data (DEM) were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM.Conclusions: The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight against malaria in Zambia and other regions with seasonal transmission. This work shows that, in areas of seasonal malaria transmission, incorporating terrain-based landscape models to the planning stages of vector control allows for the exclusion of significant portions of landscape that would be unsuitable for water to accumulate and for mosquito larvae occupation. With increasing free availability of satellite imagery such as SRTM and LandSat, the development of satellite imagery-based prediction models is becoming more accessible to vector management coordinators.

AB - Background: Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures.Methods: A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae.Results: Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM) digital elevation data (DEM) were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM.Conclusions: The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight against malaria in Zambia and other regions with seasonal transmission. This work shows that, in areas of seasonal malaria transmission, incorporating terrain-based landscape models to the planning stages of vector control allows for the exclusion of significant portions of landscape that would be unsuitable for water to accumulate and for mosquito larvae occupation. With increasing free availability of satellite imagery such as SRTM and LandSat, the development of satellite imagery-based prediction models is becoming more accessible to vector management coordinators.

UR - http://www.scopus.com/inward/record.url?scp=78049402211&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78049402211&partnerID=8YFLogxK

U2 - 10.1186/1476-072X-9-58

DO - 10.1186/1476-072X-9-58

M3 - Article

C2 - 21050496

AN - SCOPUS:78049402211

VL - 9

JO - International Journal of Health Geographics

JF - International Journal of Health Geographics

SN - 1476-072X

M1 - 58

ER -