Identification of Phosphorylation Sites for Adenosine 3'5'-Cyclic Phosphate Dependent Protein Kinase on the Voltage-Sensitive Sodium Channel from Electrophorus electricus

Mark C. Emerick, William S. Agnew

Research output: Contribution to journalArticlepeer-review

Abstract

The voltage-sensitive sodium channel from the electroplax of Electrophorus electricus is selectively phosphorylated by the catalytic subunit of cyclic-AMP-dependent protein kinase (protein kinase A) but not by protein kinase C. Under identical limiting conditions, the protein was phosphorylated 20% as rapidly as the synthetic model substrate kemptamide. A maximum of 1.7 ± 0.6 equiv of phosphate is incorporated per mole. Phosphoamino acid analysis revealed labeled phosphoserine and phosphothreonine at a constant ratio of 3.3:1. Seven distinct phosphopeptides were identified among tryptic fragments prepared from radiolabeled, affinity-purified protein and resolved by HPLC. The three most rapidly labeled fragments were further purified and sequenced. Four phosphorylated amino acids were identified deriving from three consensus phosphorylation sites. These were serine 6, serine 7, and threonine 17 from the amino terminus and a residue within 47 amino acids of the carboxyl terminus, apparently serine 1776. The α-subunits of brain sodium channels, like the electroplax protein, are readily phosphorylated by protein kinase A. However, these are also phosphorylated by protein kinase C and exhibit a markedly different pattern of incorporation. Each of three brain α-subunits displays an ~200 amino acid segment between homologous repeat domains I and II, which is missing from the electroplax and skeletal muscle proteins [Noda et al. (1986) Nature (London) 320, 188; Kayano et al. (1988) FEBS Lett. 228, 1878; Trimmer et al. (1989) Neuron 3, 33]. Most of the phosphorylation of the brain proteins occurs on a cluster of consensus phosphorylation sites located in this segment. This contrasts with the pattern of highly active sites on the amino and carboxyl termini of the electroplax protein. The detection of seven labeled tryptic phosphopeptides compared to the maximal labeling stoichiometry of ~2 suggests that many of the acceptor sites on the protein may be blocked by endogenous phosphorylation.

Original languageEnglish (US)
Pages (from-to)8367-8380
Number of pages14
JournalBiochemistry
Volume28
Issue number21
DOIs
StatePublished - 1989

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'Identification of Phosphorylation Sites for Adenosine 3'5'-Cyclic Phosphate Dependent Protein Kinase on the Voltage-Sensitive Sodium Channel from Electrophorus electricus'. Together they form a unique fingerprint.

Cite this