Identification of a mutation in liver glycogen phosphorylase in glycogen storage disease type VI

Susie Chang, Marjorie J. Rosenberg, Holmes Morton, Clair A. Francomano, Leslie G. Biesecker

Research output: Contribution to journalArticlepeer-review

Abstract

Glycogen storage disease type VI (GSD6) defines a group of disorders that cause hepatomegaly and hypoglycemia with reduced liver phosphorylase activity. The course of these disorders is generally mild, but definitive diagnosis requires invasive procedures. We analyzed a Mennonite kindred with an autosomal recessive form of GSD6 to determine the molecular defect and develop a non-invasive diagnostic test. Linkage analysis was performed using genetic markers flanking the liver glycogen phosphorylase gene (PYGL), which was suspected to be the cause of the disorder on biochemical grounds. Mennonite GSD6 was linked to the PYGL locus with a multipoint LOD score of 4.7. The PYGL gene was analyzed for mutations by sequencing genomic DNA. Sequencing of genomic DNA revealed a splice site abnormality of the intron 13 splice donor. Confirmation of the genomic mutation was performed by sequencing RT-PCR products, which showed heterogeneous PYGL mRNA lacking all or part of exon 13 in affected persons. This study is the first to demonstrate that a mutation in the PYGL gene can cause GSD6. This mutation is estimated to be present on 3% of Mennonite chromosomes and the disease affects 0.1% of that population. Determination of this mutation provides a basis for the development of a simple and non-invasive diagnostic test for the disease and the carrier state in this population and confirms biochemical data showing the importance of this gene in glucose homeostasis.

Original languageEnglish (US)
Pages (from-to)865-870
Number of pages6
JournalHuman molecular genetics
Volume7
Issue number5
DOIs
StatePublished - May 1998

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Genetics(clinical)

Fingerprint Dive into the research topics of 'Identification of a mutation in liver glycogen phosphorylase in glycogen storage disease type VI'. Together they form a unique fingerprint.

Cite this