Identification and characterization of a major early cytomegalovirus DNA-binding protein

D. G. Anders, A. Irmiere, W. Gibson

Research output: Contribution to journalArticlepeer-review

Abstract

We characterized a DNA-binding protein with an approximate molecular weight of 129,000 (DB129) which is present in the nuclei of cytomegalovirus- (strain Colburn) infected cells, but not in virus particles. Results of two types of experiments demonstrated that DB129 is a member of the early class of herpesviral proteins. First, time course pulse-labeling experiments showed that its synthesis begins after that of the intermediate-early protein IE94, but prior to the appearance of late viral proteins, and was reduced at late times. Second, in the presence of inhibitors of viral DNA replication, DB129 continued to be made and accumulated to elevated levels. A second set of experiments showed that DB129 bound to a single-stranded DNA in vitro and was eluted by a NaCl gradient in two peaks, one at about 0.2 M and the second at about 0.6 M. A similar pattern of release was observed when infected-cell nuclei were serially extracted with increasing NaCl concentrations. In addition, treatment of nuclei with DNase I selectivity released DB129, along with a small but significant fraction of another DNA-binding protein, DB51. These results suggest that DB129 is associated with DNA in vivo and that it interacts directly with single-stranded DNA. It was also shown that cells infected with human cytomegalovirus (strain Towne) contain a slightly larger counterpart to DB129, which was designated DB140. Similarities between these proteins and the major DNA-binding protein of herpes simplex virus are discussed.

Original languageEnglish (US)
Pages (from-to)253-262
Number of pages10
JournalJournal of virology
Volume58
Issue number2
DOIs
StatePublished - 1986

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Identification and characterization of a major early cytomegalovirus DNA-binding protein'. Together they form a unique fingerprint.

Cite this