TY - JOUR
T1 - Hypusine-containing protein eIF5A promotes translation elongation
AU - Saini, Preeti
AU - Eyler, Daniel E.
AU - Green, Rachel
AU - Dever, Thomas E.
N1 - Funding Information:
Acknowledgements We thank T. G. Kinzy for providing anti-yeast eEF1A, eEF2 and eEF3 antisera, as well as constructs for the purification of eEF2 and eEF3; J. Lorsch for providing constructs for purification of yeast initiation factors; J. Dinmann for frameshifting reporter vectors, and A. Hinnebusch, T. G. Kinzy, A. Jivotovskaya, D. Shelton, C. Grant, J. Lorsch and members of the Dever and Hinnebusch laboratories for comments and discussion. Salary support provided by HHMI (R.G.) and NIH (D.E.E.). This work was supported in part by the Intramural Research Program of the NIH, NICHD (to T.E.D.).
PY - 2009/5/7
Y1 - 2009/5/7
N2 - Translation elongation factors facilitate protein synthesis by the ribosome. Previous studies identified two universally conserved translation elongation factors, EF-Tu in bacteria (known as eEF1A in eukaryotes) and EF-G (eEF2), which deliver aminoacyl-tRNAs to the ribosome and promote ribosomal translocation, respectively. The factor eIF5A (encoded by HYP2 and ANB1 in Saccharomyces cerevisiae), the sole protein in eukaryotes and archaea to contain the unusual amino acid hypusine (N -(4-amino-2-hydroxybutyl)lysine), was originally identified based on its ability to stimulate the yield (endpoint) of methionyl-puromycin synthesisa model assay for first peptide bond synthesis thought to report on certain aspects of translation initiation. Hypusine is required for eIF5A to associate with ribosomes and to stimulate methionyl-puromycin synthesis. Because eIF5A did not stimulate earlier steps of translation initiation, and depletion of eIF5A in yeast only modestly impaired protein synthesis, it was proposed that eIF5A function was limited to stimulating synthesis of the first peptide bond or that eIF5A functioned on only a subset of cellular messenger RNAs. However, the precise cellular role of eIF5A is unknown, and the protein has also been linked to mRNA decay, including the nonsense-mediated mRNA decay pathway, and to nucleocytoplasmic transport. Here we use molecular genetic and biochemical studies to show that eIF5A promotes translation elongation. Depletion or inactivation of eIF5A in the yeast S. cerevisiae resulted in the accumulation of polysomes and an increase in ribosomal transit times. Addition of recombinant eIF5A from yeast, but not a derivative lacking hypusine, enhanced the rate of tripeptide synthesis in vitro. Moreover, inactivation of eIF5A mimicked the effects of the eEF2 inhibitor sordarin, indicating that eIF5A might function together with eEF2 to promote ribosomal translocation. Because eIF5A is a structural homologue of the bacterial protein EF-P, we propose that eIF5A/EF-P is a universally conserved translation elongation factor.
AB - Translation elongation factors facilitate protein synthesis by the ribosome. Previous studies identified two universally conserved translation elongation factors, EF-Tu in bacteria (known as eEF1A in eukaryotes) and EF-G (eEF2), which deliver aminoacyl-tRNAs to the ribosome and promote ribosomal translocation, respectively. The factor eIF5A (encoded by HYP2 and ANB1 in Saccharomyces cerevisiae), the sole protein in eukaryotes and archaea to contain the unusual amino acid hypusine (N -(4-amino-2-hydroxybutyl)lysine), was originally identified based on its ability to stimulate the yield (endpoint) of methionyl-puromycin synthesisa model assay for first peptide bond synthesis thought to report on certain aspects of translation initiation. Hypusine is required for eIF5A to associate with ribosomes and to stimulate methionyl-puromycin synthesis. Because eIF5A did not stimulate earlier steps of translation initiation, and depletion of eIF5A in yeast only modestly impaired protein synthesis, it was proposed that eIF5A function was limited to stimulating synthesis of the first peptide bond or that eIF5A functioned on only a subset of cellular messenger RNAs. However, the precise cellular role of eIF5A is unknown, and the protein has also been linked to mRNA decay, including the nonsense-mediated mRNA decay pathway, and to nucleocytoplasmic transport. Here we use molecular genetic and biochemical studies to show that eIF5A promotes translation elongation. Depletion or inactivation of eIF5A in the yeast S. cerevisiae resulted in the accumulation of polysomes and an increase in ribosomal transit times. Addition of recombinant eIF5A from yeast, but not a derivative lacking hypusine, enhanced the rate of tripeptide synthesis in vitro. Moreover, inactivation of eIF5A mimicked the effects of the eEF2 inhibitor sordarin, indicating that eIF5A might function together with eEF2 to promote ribosomal translocation. Because eIF5A is a structural homologue of the bacterial protein EF-P, we propose that eIF5A/EF-P is a universally conserved translation elongation factor.
UR - http://www.scopus.com/inward/record.url?scp=65549167195&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=65549167195&partnerID=8YFLogxK
U2 - 10.1038/nature08034
DO - 10.1038/nature08034
M3 - Article
C2 - 19424157
AN - SCOPUS:65549167195
VL - 459
SP - 118
EP - 121
JO - Nature
JF - Nature
SN - 0028-0836
IS - 7243
ER -