Abstract
We examined the effect of hypoxia on proliferation and osteopontin (OPN) expression in cultured rat aortic vascular smooth muscle (VSM) cells. In addition, we determined whether hypoxia-induced increases in OPN and cell proliferation are altered under hyperglycemic conditions. Quiescent cultures of VSM cells were exposed to hypoxia (3% O2) or normoxia (18% O2) in a serum-free medium, and cell proliferation as well as the expression of OPN was assessed. Cells exposed to hypoxia for 24 h exhibited a significant increase in [3H]thymidine incorporation followed by a significant increase in cell number at 48 h in comparison with respective normoxic controls. Exposure to hypoxia produced significant increases in OPN protein and mRNA expression at 2 h followed by a gradual decline at 6 and 12 h, with subsequent significant increases at 24 h. Neutralizing antibodies to either OPN or its receptor β3 integrin but not neutralizing antibodies to β5 integrin prevented the hypoxia-induced increase in [3H]thymidine incorporation. Inhibitors of protein kinase C (PKC) and p38 mitogen-activated protein (MAP) kinase also reduced the hypoxia-induced stimulation of proliferation and OPN synthesis. Exposure to high-glucose (HG) (25 mmol/l) medium under normoxic conditions also resulted in significant increases in OPN protein and mRNA levels as well as the proliferation of VSM cells. Under hypoxic conditions, HG further stimulated OPN synthesis and cell proliferation in an additive fashion. In conclusion, hypoxia-induced proliferation of cultured VSM cells is mediated by the stimulation of OPN synthesis involving PKC and p38 MAP kinase. In addition, hypoxia also enhances the effect of HG conditions on both OPN and proliferation of cultured VSM cells, which may have important implications in the development of diabetic atherosclerosis associated with arterial wall hypoxia.
Original language | English (US) |
---|---|
Pages (from-to) | 1482-1490 |
Number of pages | 9 |
Journal | Diabetes |
Volume | 50 |
Issue number | 6 |
State | Published - 2001 |
Externally published | Yes |
Fingerprint
ASJC Scopus subject areas
- Internal Medicine
- Endocrinology, Diabetes and Metabolism
Cite this
Hypoxia stimulates osteopontin expression and proliferation of cultured vascular smooth muscle cells : Potentiation by high glucose. / Sodhi, Chhinder; Phadke, Sarojini A.; Batlle, Daniel; Sahai, Atul.
In: Diabetes, Vol. 50, No. 6, 2001, p. 1482-1490.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Hypoxia stimulates osteopontin expression and proliferation of cultured vascular smooth muscle cells
T2 - Potentiation by high glucose
AU - Sodhi, Chhinder
AU - Phadke, Sarojini A.
AU - Batlle, Daniel
AU - Sahai, Atul
PY - 2001
Y1 - 2001
N2 - We examined the effect of hypoxia on proliferation and osteopontin (OPN) expression in cultured rat aortic vascular smooth muscle (VSM) cells. In addition, we determined whether hypoxia-induced increases in OPN and cell proliferation are altered under hyperglycemic conditions. Quiescent cultures of VSM cells were exposed to hypoxia (3% O2) or normoxia (18% O2) in a serum-free medium, and cell proliferation as well as the expression of OPN was assessed. Cells exposed to hypoxia for 24 h exhibited a significant increase in [3H]thymidine incorporation followed by a significant increase in cell number at 48 h in comparison with respective normoxic controls. Exposure to hypoxia produced significant increases in OPN protein and mRNA expression at 2 h followed by a gradual decline at 6 and 12 h, with subsequent significant increases at 24 h. Neutralizing antibodies to either OPN or its receptor β3 integrin but not neutralizing antibodies to β5 integrin prevented the hypoxia-induced increase in [3H]thymidine incorporation. Inhibitors of protein kinase C (PKC) and p38 mitogen-activated protein (MAP) kinase also reduced the hypoxia-induced stimulation of proliferation and OPN synthesis. Exposure to high-glucose (HG) (25 mmol/l) medium under normoxic conditions also resulted in significant increases in OPN protein and mRNA levels as well as the proliferation of VSM cells. Under hypoxic conditions, HG further stimulated OPN synthesis and cell proliferation in an additive fashion. In conclusion, hypoxia-induced proliferation of cultured VSM cells is mediated by the stimulation of OPN synthesis involving PKC and p38 MAP kinase. In addition, hypoxia also enhances the effect of HG conditions on both OPN and proliferation of cultured VSM cells, which may have important implications in the development of diabetic atherosclerosis associated with arterial wall hypoxia.
AB - We examined the effect of hypoxia on proliferation and osteopontin (OPN) expression in cultured rat aortic vascular smooth muscle (VSM) cells. In addition, we determined whether hypoxia-induced increases in OPN and cell proliferation are altered under hyperglycemic conditions. Quiescent cultures of VSM cells were exposed to hypoxia (3% O2) or normoxia (18% O2) in a serum-free medium, and cell proliferation as well as the expression of OPN was assessed. Cells exposed to hypoxia for 24 h exhibited a significant increase in [3H]thymidine incorporation followed by a significant increase in cell number at 48 h in comparison with respective normoxic controls. Exposure to hypoxia produced significant increases in OPN protein and mRNA expression at 2 h followed by a gradual decline at 6 and 12 h, with subsequent significant increases at 24 h. Neutralizing antibodies to either OPN or its receptor β3 integrin but not neutralizing antibodies to β5 integrin prevented the hypoxia-induced increase in [3H]thymidine incorporation. Inhibitors of protein kinase C (PKC) and p38 mitogen-activated protein (MAP) kinase also reduced the hypoxia-induced stimulation of proliferation and OPN synthesis. Exposure to high-glucose (HG) (25 mmol/l) medium under normoxic conditions also resulted in significant increases in OPN protein and mRNA levels as well as the proliferation of VSM cells. Under hypoxic conditions, HG further stimulated OPN synthesis and cell proliferation in an additive fashion. In conclusion, hypoxia-induced proliferation of cultured VSM cells is mediated by the stimulation of OPN synthesis involving PKC and p38 MAP kinase. In addition, hypoxia also enhances the effect of HG conditions on both OPN and proliferation of cultured VSM cells, which may have important implications in the development of diabetic atherosclerosis associated with arterial wall hypoxia.
UR - http://www.scopus.com/inward/record.url?scp=0034981380&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034981380&partnerID=8YFLogxK
M3 - Article
C2 - 11375351
AN - SCOPUS:0034981380
VL - 50
SP - 1482
EP - 1490
JO - Diabetes
JF - Diabetes
SN - 0012-1797
IS - 6
ER -