Hypoxia-ischemia and therapeutic hypothermia in the neonatal mouse brain - A longitudinal study

Jennifer C. Burnsed, Raul Chavez-Valdez, Mir Shanaz Hossain, Kalpashri Kesavan, Lee J. Martin, Jiangyang Zhang, Frances J. Northington

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

Therapeutic hypothermia is standard of care for infants with hypoxic ischemic encephalopathy. Murine models of hypoxic-ischemic injury exist; however, a well-established mouse model of therapeutic hypothermia following hypoxic-ischemic injury is lacking. The goal of this study was to develop a full-term-equivalent murine model of therapeutic hypothermia after hypoxia-ischemia and examine magnetic resonance imaging, behavior, and histology in a region and sex specific manner. Hypoxic-ischemic injury was induced at postnatal day 10 in C57BL6 mice using a modified Vannucci model. Mice were randomized to control, hypothermia (31°C for 4h), or normothermia (36°C) following hypoxic-ischemic injury and stratified by sex. T2-weighted magnetic resonance imaging was obtained at postnatal day 18 and 30 and regional and total cerebral and cerebellar volumes measured. Behavioral assessments were performed on postnatal day 14, 21, and 28. On postnatal day 18, normothermic mice had smaller cerebral volumes (p < 0.001 vs. controls and p = 0.009 vs. hypothermia), while at postnatal day 30 both injured groups had smaller volumes than controls. When stratified by sex, only normothermia treated male mice had smaller cerebral volumes (p = 0.001 vs. control; p = 0.008 vs. hypothermia) at postnatal day 18, which persisted at postnatal day 30 (p = 0.001 vs. control). Female mice had similar cerebral volumes between groups at both day 18 and 30. Cerebellar volumes of hypothermia treated male mice differed from control at day 18, but not at 30. Four hours of therapeutic hypothermia in this murine hypoxic-ischemic injury model provides sustained neuroprotection in the cerebrum of male mice. Due to variable degree of injury in female mice, response to therapeutic hypothermia is difficult to discern. Deficits in female behavior tests are not fully explained by imaging measures and likely represent injury not detectable by volume measurements alone.

Original languageEnglish (US)
Article numbere0118889
JournalPloS one
Volume10
Issue number3
DOIs
StatePublished - Mar 16 2015

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Hypoxia-ischemia and therapeutic hypothermia in the neonatal mouse brain - A longitudinal study'. Together they form a unique fingerprint.

Cite this