Hypoxia-inducible factor 1 (HIF-1) pathway.

Research output: Contribution to journalArticle

Abstract

Hypoxia-inducible factor 1 (HIF-1) is a basic helix-loop-helix-PAS domain transcription factor that is expressed in all metazoan organisms and is composed of HIF-1alpha and HIF-1beta subunits. Under hypoxic conditions, HIF-1 regulates the transcription of hundreds of genes in a cell type-specific manner. The HIF-1alpha subunit is regulated by O2-dependent hydroxylation of proline residue 402, 564, or both, by prolyl hydroxylase domain protein 2 (PHD2), which promotes binding of the von Hippel-Lindau protein (VHL), leading to ubiquitination and proteasomal degradation; and O2-dependent hydroxylation of asparagine residue 803 by factor inhibiting HIF-1 (FIH-1), which blocks the binding of the 300-kilodalton coactivator protein (p300) and CREB binding protein (CBP). The hydroxylation reactions, which utilize O2 and alpha-ketoglutarate as substrates and generate CO2 and succinate as by-products, provide a mechanism by which changes in cellular oxygenation are transduced to the nucleus as changes in HIF-1 activity. Hydroxylase activity is inhibited in the presence of low concentrations of O2, high concentrations of tricarboxylic acid cycle intermediates (isocitrate, oxaloacetate, succinate, or fumarate), or chelators of Fe(II). Receptor for activated C kinase 1 (RACK1) competes with heat shock protein 90 (HSP90) for binding to HIF-1alpha and mediates O2-independent ubiquitination and proteasomal degradation. A growing number of proteins and small molecules have been identified that regulate HIF-1 activity by modulating the physical or functional interaction of PHD2, VHL, FIH-1, RACK1, or HSP90 with HIF-1alpha.

Original languageEnglish (US)
JournalScience's STKE : signal transduction knowledge environment
Volume2007
Issue number407
DOIs
StatePublished - Oct 9 2007

Fingerprint

Hypoxia-Inducible Factor 1
Hydroxylation
Prolyl Hydroxylases
HSP90 Heat-Shock Proteins
Ubiquitination
Succinic Acid
Proteins
Helix-Loop-Helix Motifs
CREB-Binding Protein
Oxaloacetic Acid
Fumarates
Citric Acid Cycle
Asparagine
Degradation
Chelating Agents
Mixed Function Oxygenases
Oxygenation
Proline
Protein Binding
Transcription

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Hypoxia-inducible factor 1 (HIF-1) pathway. / Semenza, Gregg L.

In: Science's STKE : signal transduction knowledge environment, Vol. 2007, No. 407, 09.10.2007.

Research output: Contribution to journalArticle

@article{e56b40632d7945acab4c2028f8737907,
title = "Hypoxia-inducible factor 1 (HIF-1) pathway.",
abstract = "Hypoxia-inducible factor 1 (HIF-1) is a basic helix-loop-helix-PAS domain transcription factor that is expressed in all metazoan organisms and is composed of HIF-1alpha and HIF-1beta subunits. Under hypoxic conditions, HIF-1 regulates the transcription of hundreds of genes in a cell type-specific manner. The HIF-1alpha subunit is regulated by O2-dependent hydroxylation of proline residue 402, 564, or both, by prolyl hydroxylase domain protein 2 (PHD2), which promotes binding of the von Hippel-Lindau protein (VHL), leading to ubiquitination and proteasomal degradation; and O2-dependent hydroxylation of asparagine residue 803 by factor inhibiting HIF-1 (FIH-1), which blocks the binding of the 300-kilodalton coactivator protein (p300) and CREB binding protein (CBP). The hydroxylation reactions, which utilize O2 and alpha-ketoglutarate as substrates and generate CO2 and succinate as by-products, provide a mechanism by which changes in cellular oxygenation are transduced to the nucleus as changes in HIF-1 activity. Hydroxylase activity is inhibited in the presence of low concentrations of O2, high concentrations of tricarboxylic acid cycle intermediates (isocitrate, oxaloacetate, succinate, or fumarate), or chelators of Fe(II). Receptor for activated C kinase 1 (RACK1) competes with heat shock protein 90 (HSP90) for binding to HIF-1alpha and mediates O2-independent ubiquitination and proteasomal degradation. A growing number of proteins and small molecules have been identified that regulate HIF-1 activity by modulating the physical or functional interaction of PHD2, VHL, FIH-1, RACK1, or HSP90 with HIF-1alpha.",
author = "Semenza, {Gregg L}",
year = "2007",
month = "10",
day = "9",
doi = "10.1126/stke.4072007cm8",
language = "English (US)",
volume = "2007",
journal = "Science Signaling",
issn = "1937-9145",
publisher = "American Association for the Advancement of Science",
number = "407",

}

TY - JOUR

T1 - Hypoxia-inducible factor 1 (HIF-1) pathway.

AU - Semenza, Gregg L

PY - 2007/10/9

Y1 - 2007/10/9

N2 - Hypoxia-inducible factor 1 (HIF-1) is a basic helix-loop-helix-PAS domain transcription factor that is expressed in all metazoan organisms and is composed of HIF-1alpha and HIF-1beta subunits. Under hypoxic conditions, HIF-1 regulates the transcription of hundreds of genes in a cell type-specific manner. The HIF-1alpha subunit is regulated by O2-dependent hydroxylation of proline residue 402, 564, or both, by prolyl hydroxylase domain protein 2 (PHD2), which promotes binding of the von Hippel-Lindau protein (VHL), leading to ubiquitination and proteasomal degradation; and O2-dependent hydroxylation of asparagine residue 803 by factor inhibiting HIF-1 (FIH-1), which blocks the binding of the 300-kilodalton coactivator protein (p300) and CREB binding protein (CBP). The hydroxylation reactions, which utilize O2 and alpha-ketoglutarate as substrates and generate CO2 and succinate as by-products, provide a mechanism by which changes in cellular oxygenation are transduced to the nucleus as changes in HIF-1 activity. Hydroxylase activity is inhibited in the presence of low concentrations of O2, high concentrations of tricarboxylic acid cycle intermediates (isocitrate, oxaloacetate, succinate, or fumarate), or chelators of Fe(II). Receptor for activated C kinase 1 (RACK1) competes with heat shock protein 90 (HSP90) for binding to HIF-1alpha and mediates O2-independent ubiquitination and proteasomal degradation. A growing number of proteins and small molecules have been identified that regulate HIF-1 activity by modulating the physical or functional interaction of PHD2, VHL, FIH-1, RACK1, or HSP90 with HIF-1alpha.

AB - Hypoxia-inducible factor 1 (HIF-1) is a basic helix-loop-helix-PAS domain transcription factor that is expressed in all metazoan organisms and is composed of HIF-1alpha and HIF-1beta subunits. Under hypoxic conditions, HIF-1 regulates the transcription of hundreds of genes in a cell type-specific manner. The HIF-1alpha subunit is regulated by O2-dependent hydroxylation of proline residue 402, 564, or both, by prolyl hydroxylase domain protein 2 (PHD2), which promotes binding of the von Hippel-Lindau protein (VHL), leading to ubiquitination and proteasomal degradation; and O2-dependent hydroxylation of asparagine residue 803 by factor inhibiting HIF-1 (FIH-1), which blocks the binding of the 300-kilodalton coactivator protein (p300) and CREB binding protein (CBP). The hydroxylation reactions, which utilize O2 and alpha-ketoglutarate as substrates and generate CO2 and succinate as by-products, provide a mechanism by which changes in cellular oxygenation are transduced to the nucleus as changes in HIF-1 activity. Hydroxylase activity is inhibited in the presence of low concentrations of O2, high concentrations of tricarboxylic acid cycle intermediates (isocitrate, oxaloacetate, succinate, or fumarate), or chelators of Fe(II). Receptor for activated C kinase 1 (RACK1) competes with heat shock protein 90 (HSP90) for binding to HIF-1alpha and mediates O2-independent ubiquitination and proteasomal degradation. A growing number of proteins and small molecules have been identified that regulate HIF-1 activity by modulating the physical or functional interaction of PHD2, VHL, FIH-1, RACK1, or HSP90 with HIF-1alpha.

UR - http://www.scopus.com/inward/record.url?scp=35148828429&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=35148828429&partnerID=8YFLogxK

U2 - 10.1126/stke.4072007cm8

DO - 10.1126/stke.4072007cm8

M3 - Article

C2 - 17925579

AN - SCOPUS:35148828429

VL - 2007

JO - Science Signaling

JF - Science Signaling

SN - 1937-9145

IS - 407

ER -