TY - JOUR
T1 - HTT silencing delays onset and slows progression of Huntington’s disease like phenotype
T2 - Monitoring with a novel neurovascular biomarker
AU - Liu, Hongshuai
AU - Zhang, Chuangchuang
AU - Xu, Jiadi
AU - Jin, Jing
AU - Cheng, Liam
AU - Wu, Qian
AU - Wei, Zhiliang
AU - Liu, Peiying
AU - Lu, Hanzhang
AU - van Zijl, Peter C.M.
AU - Ross, Christopher A.
AU - Hua, Jun
AU - Duan, Wenzhen
N1 - Publisher Copyright:
The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/11/19
Y1 - 2020/11/19
N2 - Huntington’s disease (HD) is a dominantly inherited, fatal neurodegenerative disorder caused by a CAG expansion in the Huntingtin (HTT) gene, coding for pathologic mutant HTT protein (mHTT). Because of its gain-of-function mechanism and monogenic etiology, strategies to lower HTT are being actively investigated as disease-modifying therapies. Most approaches are currently targeted at the manifest HD stage, when clinical outcomes are used to evaluate the effectiveness of therapy. However, as almost 50% of striatal volume has been lost at the time of onset of manifest HD it would be preferable to begin therapy in the premanifest period. An unmet challenge is how to evaluate therapeutic efficacy before the presence of clinical symptoms as outcome measures. To address this, we have been developing more sensitive biomarkers such as functional neuroimaging with the goal of identifying noninvasive biomarkers that provide insight into the best time to introduce HTT-lowering treatment. In this study, we mapped the temporal trajectories of arteriolar cerebral blood volumes (CBVa) using inflow-based vascular-space-occupancy (iVASO) MRI technique in an HD mouse model. Significantly elevated CBVa was evident in premanifest zQ175 HD mice prior to motor deficits and striatal atrophy, recapitulating altered CBVa in human premanifest HD. CRISPR/Cas9-mediated non-allele-specific HTT silencing in striatal neurons restored altered CBVa in premanifest zQ175 mice, delayed onset of striatal atrophy, and slowed the progression of motor phenotype and brain pathology. This study showed the potential of CBVa as a noninvasive fMRI biomarker for premanifest HD clinical trials and demonstrates long-term benefits of introducing an HTT lowering treatment in the premanifest HD.
AB - Huntington’s disease (HD) is a dominantly inherited, fatal neurodegenerative disorder caused by a CAG expansion in the Huntingtin (HTT) gene, coding for pathologic mutant HTT protein (mHTT). Because of its gain-of-function mechanism and monogenic etiology, strategies to lower HTT are being actively investigated as disease-modifying therapies. Most approaches are currently targeted at the manifest HD stage, when clinical outcomes are used to evaluate the effectiveness of therapy. However, as almost 50% of striatal volume has been lost at the time of onset of manifest HD it would be preferable to begin therapy in the premanifest period. An unmet challenge is how to evaluate therapeutic efficacy before the presence of clinical symptoms as outcome measures. To address this, we have been developing more sensitive biomarkers such as functional neuroimaging with the goal of identifying noninvasive biomarkers that provide insight into the best time to introduce HTT-lowering treatment. In this study, we mapped the temporal trajectories of arteriolar cerebral blood volumes (CBVa) using inflow-based vascular-space-occupancy (iVASO) MRI technique in an HD mouse model. Significantly elevated CBVa was evident in premanifest zQ175 HD mice prior to motor deficits and striatal atrophy, recapitulating altered CBVa in human premanifest HD. CRISPR/Cas9-mediated non-allele-specific HTT silencing in striatal neurons restored altered CBVa in premanifest zQ175 mice, delayed onset of striatal atrophy, and slowed the progression of motor phenotype and brain pathology. This study showed the potential of CBVa as a noninvasive fMRI biomarker for premanifest HD clinical trials and demonstrates long-term benefits of introducing an HTT lowering treatment in the premanifest HD.
UR - http://www.scopus.com/inward/record.url?scp=85098887290&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098887290&partnerID=8YFLogxK
U2 - 10.1101/2020.11.17.386631
DO - 10.1101/2020.11.17.386631
M3 - Article
AN - SCOPUS:85098887290
JO - Advances in Water Resources
JF - Advances in Water Resources
SN - 0309-1708
ER -