Hidden in plain sight: Subtle effects of the 8-oxoguanine lesion on the structure, dynamics, and thermodynamics of a 15-base pair oligodeoxynucleotide duplex

Charisse M. Crenshaw, Jacqueline E. Wade, Haribabu Arthanari, Dominique Frueh, Benjamin F. Lane, Megan E. Núñez

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

The base lesion 8-oxoguanine is formed readily by oxidation of DNA, potentially leading to G → T transversion mutations. Despite the apparent similarity of 8-oxoguanine-cytosine base pairs to normal guanine-cytosine base pairs, cellular base excision repair systems effectively recognize the lesion base. Here we apply several techniques to examine a single 8-oxoguanine lesion at the center of a nonpalindromic 15-mer duplex oligonucleotide in an effort to determine what, if anything, distinguishes an 8-oxoguanine-cytosine (8oxoG-C) base pair from a normal base pair. The lesion duplex is globally almost indistinguishable from the unmodified parent duplex using circular dichroism spectroscopy and ultraviolet melting thermodynamics. The DNA mismatch-detecting photocleavage agent Rh(bpy) 2chrysi 3+ cleaves only weakly and nonspecifically, revealing that the 8oxoG-C pair is locally stable at the level of the individual base pairs. Nuclear magnetic resonance spectra are also consistent with a well-conserved B-form duplex structure. In the two-dimensional nuclear Overhauser effect spectra, base-sugar and imino-imino cross-peaks are strikingly similar between parent and lesion duplexes. Changes in chemical shift due to the 8oxoG lesion are localized to its complementary cytosine and to the 2-3 bp immediately flanking the lesion on the lesion strand. Residues further removed from the lesion are shown to be unperturbed by its presence. Notably, imino exchange experiments indicate that the 8-oxoguanine-cytosine pair is strong and stable, with an apparent equilibrium constant for opening equal to that of other internal guanine-cytosine base pairs, on the order of 10 -6. This collection of experiments shows that the 8-oxoguanine-cytosine base pair is incredibly stable and similar to the native pair.

Original languageEnglish (US)
Pages (from-to)8463-8477
Number of pages15
JournalBiochemistry
Volume50
Issue number39
DOIs
StatePublished - Oct 4 2011

ASJC Scopus subject areas

  • Biochemistry

Fingerprint

Dive into the research topics of 'Hidden in plain sight: Subtle effects of the 8-oxoguanine lesion on the structure, dynamics, and thermodynamics of a 15-base pair oligodeoxynucleotide duplex'. Together they form a unique fingerprint.

Cite this