Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity

J. P. Saul, R. F. Rea, D. L. Eckberg, R. D. Berger, R. J. Cohen

Research output: Contribution to journalArticlepeer-review

Abstract

Low-frequency (< 0.15 Hz) fluctuations of heart rate are increased by maneuvers, such as standing or hemorrhage, that increase sympathetic outflow to the heart and vasculature. To test the hypothesis that low-frequency heart rate fluctuations provide an index of sympathetic efferent activity, we compared power spectral measures of heart rate variability with two measures of sympathetic outflow, peroneal nerve sympathetic activity and antecubital vein plasma norepinephrine concentrations. Autonomic outflow was varied with graded stepwise infusions of nitroprusside and phenylephrine, which lowered or raised average diastolic pressures by ~ 15 mmHg. Before vasoactive drug infusions, no spectral measure of heart rate variability correlated significantly with muscle sympathetic activity, plasma norepinephrine concentration, average heart rate, or arterial pressure. During increases of muscle sympathetic activity and probable reductions of cardiac vagal activity induced by nitroprusside, the fraction of heart rate spectral power at low frequencies, but not the absolute value, correlated significantly with muscle sympathetic activity and plasma norepinephrine. However, during reductions of muscle sympathetic activity and probable elevations of cardiac vagal activity induced by phenylephrine, no measure of heart rate variability correlated significantly with muscle sympathetic activity. These findings can be explained by a model of heart rate control in which low-frequency heart rate fluctuations result from changing levels of both the sympathetic and parasympathetic inputs to the sinoatrial node.

Original languageEnglish (US)
Pages (from-to)H713-H721
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume258
Issue number3 27-3
DOIs
StatePublished - 1990
Externally publishedYes

Keywords

  • autonomic control of heart rate
  • muscle sympathetic activity
  • power spectral analysis

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity'. Together they form a unique fingerprint.

Cite this