Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation in vivo

Albert Gjedde, Sean Marrett

Research output: Contribution to journalArticlepeer-review

Abstract

The regulation of brain energy metabolism during neuronal activation is poorly understood. Specifically, the extent to which oxidative metabolism rather than glycolysis supplies the additional ATP necessary to sustain neuronal activation is in doubt. A recent hypothesis claims that astrocytes generate lactate with the muscle-type lactate dehydrogenase (LDH) isozyme LD5. Lactate from astrocytes then undergoes oxidation in neurons after reconversion to pyruvate by the LDH subtype LD1. On the basis of this hypothesis, the authors predicted that the time course of an excitatory increase of the oxidative metabolism of brain tissue must depend on the degree to which astrocytes provide neurons with pyruvate in the form of lactate. From the known properties of the LDH subtypes, the authors predicted two time courses for the changes of oxygen consumption in response to neuronal stimulation: one reflecting the properties of the neuronal LDH subtype LD1, and the other reflecting the astrocytic LDH subtype LD5. Measuring oxygen consumption (CMRo2) with positron emission tomography, the authors demonstrated increased CMRo2 during sustained stimulation of visual cortex with a complex stimulus. The CMRo2 increased 20.5% after 3 minutes and 27.5% after 8 minutes of stimulation, consistent with a steady-state oxygen-glucose metabolism ratio of 5.3, which is closest to the index predicted for the LD1 subtype. The index is equal to the oxygen-glucose metabolism ratio of 5.5 calculated at baseline, indicating that pyruvate is converted to lactate in a cellular compartment with an LDH reaction closest to that of LD1, whether at rest or during stimulation of the visual cortex with the current stimulus. The findings are consistent with a claim that neurons increase their oxidative metabolism in parallel with an increase of pyruvate, the latter generated by neuronal rather than astrocytic glycolysis.

Original languageEnglish (US)
Pages (from-to)1384-1392
Number of pages9
JournalJournal of Cerebral Blood Flow and Metabolism
Volume21
Issue number12
DOIs
StatePublished - 2001

Keywords

  • Astrocytes
  • Lactate
  • Neurons
  • Oxygen
  • Stimulation

ASJC Scopus subject areas

  • Neurology
  • Clinical Neurology
  • Cardiology and Cardiovascular Medicine

Fingerprint Dive into the research topics of 'Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation in vivo'. Together they form a unique fingerprint.

Cite this