Glucagon stimulates expression of the inducible cAMP early repressor and suppresses insulin gene expression in pancreatic β-cells

M. A. Hussain, P. B. Daniel, J. F. Habener

Research output: Contribution to journalArticlepeer-review

Abstract

The hormone glucagon is secreted by the α-cells of the endocrine pancreas (islets of Langerhans) during fasting and is essential for the maintenance of blood glucose levels by stimulation of hepatic glucose output. Excessive production and secretion of glucagon by the α-cells of the islets is a common accompaniment to diabetes. The resulting hyperglucagonemia stimulates hepatic glucose production, thereby contributing to hyperglycemia of diabetes. The reduced insulin secretion in diabetes and resultant failure to suppress glucagon secretion by intra-islet paracrine mechanisms is believed to cause the hypersecretion of glucagon. Here, we report the discovery of a new mechanism by which glucagon suppresses insulin secretion. We show that glucagon, but not glucagon-like peptide 1 (GLP-1)min or pituitary adenylyl cyclase-activating peptide (PACAP) specifically induces the expression of the transcriptional repressor inducible cAMP early repressor (ICER) in pancreatic β-cells, resulting in a repression of the transcriptional expression of the insulin gene. Remarkably, glucagon, GLP-1, and PACAP all stimulate the formation of cAMP to a comparable extent in rat pancreatic islets, but only glucagon activates the expression of ICER and represses insulin gene transcription in β-cells. These findings lead us to propose that hyperglucagonemia may additionally aggravate the diabetic phenotype via a suppression of insulin gene expression mediated by the transcriptional repressor ICER.

Original languageEnglish (US)
Pages (from-to)1681-1690
Number of pages10
JournalDiabetes
Volume49
Issue number10
DOIs
StatePublished - 2000

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Fingerprint Dive into the research topics of 'Glucagon stimulates expression of the inducible cAMP early repressor and suppresses insulin gene expression in pancreatic β-cells'. Together they form a unique fingerprint.

Cite this