Genomic characterization of genes encoding histone acetylation modulator proteins identifies therapeutic targets for cancer treatment

Zhongyi Hu, Junzhi Zhou, Junjie Jiang, Jiao Yuan, Youyou Zhang, Xuepeng Wei, Nicki Loo, Yueying Wang, Yutian Pan, Tianli Zhang, Xiaomin Zhong, Meixiao Long, Kathleen T. Montone, Janos L. Tanyi, Yi Fan, Tian Li Wang, Ie Ming Shih, Xiaowen Hu, Lin Zhang

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

A growing emphasis in anticancer drug discovery efforts has been on targeting histone acetylation modulators. Here we comprehensively analyze the genomic alterations of the genes encoding histone acetylation modulator proteins (HAMPs) in the Cancer Genome Atlas cohort and observe that HAMPs have a high frequency of focal copy number alterations and recurrent mutations, whereas transcript fusions of HAMPs are relatively rare genomic events in common adult cancers. Collectively, 86.3% (63/73) of HAMPs have recurrent alterations in at least 1 cancer type and 16 HAMPs, including 9 understudied HAMPs, are identified as putative therapeutic targets across multiple cancer types. For example, the recurrent focal amplification of BRD9 is observed in 9 cancer types and genetic depletion of BRD9 inhibits tumor growth. Our systematic genomic analysis of HAMPs across a large-scale cancer specimen cohort may facilitate the identification and prioritization of potential drug targets and selection of suitable patients for precision treatment.

Original languageEnglish (US)
Article number733
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Genomic characterization of genes encoding histone acetylation modulator proteins identifies therapeutic targets for cancer treatment'. Together they form a unique fingerprint.

Cite this