Genetic basis for species vulnerability in the cheetah

S. J. O'Brien, M. E. Roelke, L. Marker, A. Newman, C. A. Winkler, D. Meltzer, L. Colly, J. F. Evermann, M. Bush, D. E. Wildt

Research output: Contribution to journalReview articlepeer-review

582 Scopus citations

Abstract

A population genetic survey of over 200 structural loci previously revealed that the South African cheetah (Acinonyx jubatus jubatus) has an extreme paucity of genetic variability, probably as a consequence of a severe population bottleneck in its recent past. The genetic monomorphism of the species is here extended to the major histocompatibility complex, since 14 reciprocal skin grafts between unrelated cheetahs were accepted. The apparent consequences of such genetic uniformity to the species include (i) great difficulty in captive breeding, (ii) a high degree of juvenile mortality in captivity and in the wild, and (iii) a high frequency of spermatozoal abnormalities in ejaculates. The species vulnerability of the cheetah was demonstrated by an epizootic of coronavirus-associated feline infectious peritonitis in an Oregon breeding colony in 1983. Exposure and spread of the coronavirus, which has a very low morbidity in domestic cats (approximately 1 percent), has decimated a heretofore productive and healthy captive population. The extreme genetic monomorphism, especially at the major histocompatibility complex, and the apparent hypersensitivity of the cheetah to a viral pathogen may be related, and provide a biological basis for understanding the adaptive significance of abundant genetic variation in outbred mammalian species.

Original languageEnglish (US)
Pages (from-to)1428-1434
Number of pages7
JournalScience
Volume227
Issue number4693
DOIs
StatePublished - 1985

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Genetic basis for species vulnerability in the cheetah'. Together they form a unique fingerprint.

Cite this