Genetic analysis of the role of G protein-coupled receptor signaling in electrotaxis

Min Zhao, Tian Jin, Colin D. McCaig, John V. Forrester, Peter N. Devreotes

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

Cells display chemotaxis and electrotaxis by migrating directionally in gradients of specific chemicals or electrical potential. Chemotaxis in Dictyostelium discoideum is mediated by G protein-coupled receptors. The unique Gβ is essential for all chemotactic responses, although different chemoattractants use different receptors and Gα subunits. Dictyostelium amoebae show striking electrotaxis in an applied direct current electric field. Perhaps electrotaxis and chemotaxis share similar signaling mechanisms? Null mutation of Gβ and cAMP receptor 1 and Gα2 did not abolish electrotaxis, although Gβ-null mutations showed suppressed electrotaxis. By contrast, G protein signaling plays an essential role in chemotaxis. G protein-coupled receptor signaling was monitored with PHcrac-green fluorescent protein, which translocates to inositol phospholipids at the leading edge of cells during chemotaxis. There was no intracellular gradient of this protein during electrotaxis. However, F-actin was polymerized at the leading edge of cells during electrotaxis. We conclude that reception and transduction of the electrotaxis signal are largely independent of G protein-coupled receptor signaling and that the pathways driving chemotaxis and electrotaxis intersect downstream of heterotrimeric G proteins to invoke cytoskeletal elements.

Original languageEnglish (US)
Pages (from-to)921-927
Number of pages7
JournalJournal of Cell Biology
Volume157
Issue number6
DOIs
StatePublished - Jun 10 2002
Externally publishedYes

Keywords

  • Cell migration
  • Dictyostelium
  • Electric fields
  • Electrotaxis
  • G protein-coupled receptor signaling

ASJC Scopus subject areas

  • Cell Biology

Fingerprint

Dive into the research topics of 'Genetic analysis of the role of G protein-coupled receptor signaling in electrotaxis'. Together they form a unique fingerprint.

Cite this